
p w '

DTuC
AFIT/GCS/ENG/91D-22 DTCr'

- C-

AD-A243 624

AN APPLICATION OF THE
OBJECT-ORIENTED PARADIGM

TO A FLIGHT SIMULATOR

THESIS

Dennis Joseph Simpson
Captain, USAF

AFIT/GCS/ENG/91 D-22

Approved for public release; distribution unlimited

919076 91 1224 050
IImhliijyggg

ROIForm ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704 -0188
Puoi(' 7-: 4 " s I.-em on of infornaton is estimated to a ve,aele ! nour Der 'eswose. ndwing the tinne for rev ewin anstrictons. searc ".- e. sling data sources.
oather,i ro a *ai.-, the Gata needed, and com ietling and r e rg the c1ieciion of information Send comments regadimng tts burcen estimate or an other aspect ti
coliec, : - . 'i" : r ,n. ng suaggestOns tor feaucimn this ourden tc 4as~hngton HeadQd.arters Se, ces. Direicorate fo

r
information O0erations and Replrts 2' Jefleron

Davis r . a e 1204 'rVnAron a'A 222C2-4302. and to tie O'#ie of Management and Budget, Paperworx Redultion Project 0704-D188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE December 1991 Master's Thesis 5. FUNDING NUMBERS

AN APPLICATION OF THE OBJECT-ORIENTED PARADIGM
TO A FLIGHT SIMULATOR

6. AUTHOR(S)
Dennis J. Simpson, Captain, USAF

7. PERFORMiNG ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology REPORT NUMBER

WPAFB OH 45433-6583 AFIT/GCS/ENG/91D-22

9. SPONSORING MON!iORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING

RL/COAA AGENCY REPORT NUMBER

Griffis AFB, NY 13441

11. SUPPLEMENTARY NOTES

J 12a DIST 7 ,!2''ON AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13 A C .!S 'i.' -,ur 210 words,
SThis thesis describes the object-oriented software development techniques that were used to analyze, design and

implement a flight simulator. The objective of this thesis was to present a comprehensive object-oriented software
development methodology and show how it was used in constructing an actual application.
An extensive review of current object-oriented practices is presented along with the methods that were used
to take the flight simulator from analysis to design and through to implementation. The description of the
methodology concentrates upon the design and implementation phases of the object-oriented software lifecycle.
Examples from the design of the flight simulator demonstrate how each phase of the methodology was applied.
The thesis includes insights on how to use the C++ language in implementing an object-oriented design and
how to fold procedurally oriented code into an object-oriented framework.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Computer Applications, Computer Graphics, 191
Computer Programming, Flight Simulation, Software Engineering 16. PRICE CODE

17. SECUR:TY CLASSIFICATION 18. SECURITY CLASSIFICATION I 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF RE[,'RT OF THIS PAGE OF ABSTrAE'"

UNCLASSIFIED I UNCLASSIFIED IUNCLASSIFIED UL
NS% 75-:0-0"-280 550^1 Sta"da-d -'o-r 298 'Rev 2-89)

2pi, " Ir %2 N TcZ

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablity Statement.
Denote public availability or limitation. Cite

Block 2. Report Date, Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reports
number(s), and work unit number(s). Use the NASA - NASA - Leave blank
following labels: NTIS NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract. Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Address(es). Self-explanatory. Block 16. Price Code Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number, Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.- 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. Sosoring/Monitoring Ageny Regulations (i.e., UNCLASSIFIED). If form
Names(s) and Address(es). Self-explanatory. contains classified information, stamp

Block 10. Soonsorina/Monitorina Agency, classification on the top and bottom of the page.

Report Number. (If known)
Block 20. Limitation of Abstract, This blockBlock 11. Suoo1ementarv Notes. Enter must be completed to assign a limitation to the

information not included elsewhere such as: must b e ete to a nlimited) o the

Prepared in cooperation with...; Trans. of ..., To abstract. Enter either UL (unlimited) or SAR

be published in When a report is revised, (same as report). An entry in this block is
include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

AFIT/GCS/ENG/91D-22

AN APPLICATION OF THE OBJECT-ORIENTED PARADIGM

TO A FLIGHT SIMULATOR

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of - ,

Master of Science (Computer Systems) 'l 2 " , tv'!

Dennis Joseph Simpson, B.S. 3 o, , ,

Captain, USAF i.rt i,

December, 1991

Approved for piblic rclcasc; distribution unlimited

Acknowledgments

I am indebted to many individuals. I would like to thank my advisor, Lieu-

tenant Colonel Phil Amburn, for his help and guidance during this project. I also

want to thank the other members of the thesis group: Captain John Brunderman,

Captain Bob Olson, Captain Mark Gerken, and Captain Don Duckett. This would

not have been possible without them. Additional thanks goes to my readers, Lieu-

tenant Colonel Pat Lawlis and Lieutenant Colonel Marty Stytz and to Major David

Umphress for his "object-oriented" advice way back when this all started.

My greatest thanks goes to my wife De. Thanks for hanging in there through

those lonely times and not letting me open those computer games until this was

finished.

Dennis Joseph Simpson

ii

Table of Contents

Page

Acknowledgments................................... :

Table of Contents...................................... iii

List of Figures. vii

List of Tables ix

Abstract x

I. Introduction. 1-1

1.1 Background. 1-1

1.2 Problem 1-1

1.3 Scope 1-2

1.4 Assumptions. 1-2

1.4.1 Implementation 1-2

1.5 Summary. 1-4

1.6 Thesis Overview 1-4

11. Literature Review. 2-1

2.1 Introduction. 2-1

2.2 The Software Crisis 2-1

2.3 The Object-Oriented Paradigm. 2-2

2.3.1 Objects 2-3

2.3.2 Classes 2-3

2.3.3 Relationships Between Classes. 2-3

ill

Page

2.3.4 Communication Between Objects 2-5

2.3.5 Terminology 2-5

2.4 Major Principles of the Object Oriented Paradigm. .. 2-7

2.4.1 Abstraction 2-7

2.4.2 Encapsulation 2-8

2.5 How To Apply the Object-Oriented Paradigm 2-8

2.5.1 Object-Oriented Analysis (OOA) 2-9

2.5.2 Object-Oriented Design (OOD) 2-16

2.5.3 Object-Oriented Programming (OOP) 2-27

2.5.4 Notation 2-28

2.6 Benefits and Drawbacks of the Object-Oriented Approach 2-28

2.6.1 Benefits of the Object-Oriented Approach . . 2-28

2.6.2 Drawbacks of the Object-Oriented Approach . 2-37

2.7 Successful Applications of the Object-Oriented Approach 2-39

2.8 Summary 2-40

III. Methodology 3-1

3.1 Introduction 3-1

3.2 Analysis 3-3

3.2.1 The Analysis Process 3-4

3.2.2 The Notation 3-8

3.3 Design 3-11

3.3.1 Good Design/Designing For Reusability. . .. 3-12

3.3.2 High Level Design 3-14

3.3.3 Low Level Design/Implementation 3-21

3.4 Conclusion 3-25

iv

Page

IV. Design Highlights 4-1

4.1 Introduction 4-1

4.2 Analysis 4-1

4.2.1 Initial Analysis 4-2

4.3 Low Level Inputs - The Joystick and RS232 Port Classes 4-6

4.3.1 Detailed Analysis 4-7

4.3.2 High Level Design I 4-9

4.3.3 Low Level Design/Implementation I 4-12

4.3.4 High Level Design II. 4-17

4.3.5 Low Level Design II - Revising the Joystick

Class 4-20

4.3.6 Final Design Activities 4-22

4.4 Static Data Members and Static Methods 4-23

4.5 The Window and Text Window Classes 4-24

4.5.1 Resolving Multiple Relationships 4-25

4.6 Conclusion 4-29

V. Reusing Procedurally Oriented Code 5-1

5.1 Introduction 5-1

5.2 Reasons for Folding Procedures into Classes 5-1

5.3 Identify the Candidate Class 5-3

5.4 Identifying the Data and Procedures 5-4

5.5 Implementing the Methods 5-5

5.6 Conclusion 5-8

VI. Summary and Recommendations 6-1

6.1 Summary 6-1

6.1.1 Literature Review 6-1

v

Page

6.1.2 Methodology 6-5

6.1.3 Applying the Methodology 6-9

6.1.4 Reusing Procedurally Oriented Code 6-9

6.2 Conclusions 6-10

6.3 Recommendations for Future Research 6-10

6.4 Remarks 6-11

Appendix A. Bibliography of OOA Sources A-1

Appendix B. Flight Simulator Context Analysis B-1

Appendix C. Flight Simulator Design C-1

Appendix D. Bibliography of Additional Object-Oriented Sources D-1

Appendix E. Using C++ To Implement an Object-Oriented Design E-1

E.1 Introduction E-1

E.2 Object Representation E-2

E.3 Providing Object Visibility E-4

E.3.1 Implementing Required Data Paths E-5

E.3.2 Hiding Data E-8

E.4 Conclusion E-13

Bibliography BIB-1

Vita VITA-1

vi

List of Figures

Figure Page

2.1. The Object-Oriented Structured Design Notation 2-29

2.2. Coad and Yourdon's OOA/OOD Notation 2-30

2.3. Booch Class Diagram 2-31

2.4. Booch Object Diagram 2-32

2.5. Booch Module and Process Diagrams 2-33

3.1. System Notation 3-9

3.2. Object Notation 3-10

4.1. Flight Simulator Initial Analysis 4-5

4.2. Initial Joystick Attributes 4-8

4.3. Initial Joystick Methods 4-9

4.4. Initial Implementation of the Joystick and RS232 Port Classes . . 4-16

4.5. Second Design of Joystick and RS232 Port Classes 4-18

4.6. Full Design of the Joystick and RS232 Port Classes 4-21

4.7. The Window Class Heirarchy 4-26

B.1. Flight Simulator Concept Map B-1

C.1. Flight Simulator Composition C-1

C.2. Window and Queued Input Classes C-2

C.3. Dynamic Object Class Hierarchy C-3

C.4. Input Devices C-4

C.5. RS232 Port Class Hierarchy C-5

C.6. World Window Class Composition C-6

C.7. Image Generation Classes C-7

vii

Figure Page

C.8. Distributed RS232 Port Class. C-8

C.9. Dynamic Objects Manager. C-9

C.1.Distport Module C-10

C.11.Dynamic Object Class C-l1

C.12.F16 Class. C- 12

C. 13. Flight Simulator Class C- 13

C. 14. Font Class. C- 14

C.15.Font Manager C-15

C.16.Force Torque Spaceball Class. C-16

C.17.Joystick Class C-17

C.18.Managed RS232 Port Class C-18

C.19.RS232 Port Class. C19

C.20.Port Manager C-20

C.21.Port Reader Class. C-21

C.22.Queued Inputs Manager C-22

C.23.Queued Input Class C-23

C.24.Socket Class. C-24

C.25.Spaceball Class. C-25

C.26.Spaceball Port Reader Class. C-26

C.27.Static Timer. C-27

C.28.Text Item Class. C-28

C.29.Text Window Class C-29

C.30.Unmanaged RS232 Port Class C-30

C.31.User Aircraft Class C-31

C.32. Voltages Spaceball Class C-32

C.33.Window Manager. C-33

C.34.Window Class C-34

viii

List of Tables

TaI)Ie Page

2.1. Comparison of OOA Techniques. 2-11

ix

AFIT/GCS/ENG/91D-22

Abstract

This thesis describes the object-oriented software development techniques that

were used to analyze, design and implement a flight simulator. The objective of

this thesis was to present a comprehensive object-oriented software development

methodology and show how it was used in constructing an actual application.

An extensive review of current object-oriented practices is presented along

with the methods that were used to take the flight simulator from analysis to design

and through to implementation. The description of the methodology concentrates

upon the design and implementation phases of the object-oriented software lifecycle.

Examples from the design of the flight simulator demonstrate how each phase of the

methodology was applied.

The thesis includes insighLs on how to use the C++ language in implementing

an object-oriented design and how to fold procedurally oriented code into an object-

oriented framework.

x

AN APPLICATION OF THE OBJECT-ORIENTED PARADIGM

TO A FLIGHT SIMULATOR

L Introduction

1.1 Background

"The object of flight simulation is to reproduce on the ground the behavior of

an aircraft in flight" (45:1). The benefits of flight simulators include saving money,

increased safety, more opportunity for use (versus flying the actual aircraft) and less

harm to the environment (45:234-235). One of the disadvantages of flight simulators

is that they can cost millions of dollars (63:20).

The majority of flight simulators in use today are made where the "out the

cockpit" images are entirely computer generated. In effect, the computer places the

pilot completely in an artificial world of the computer's creation. The main benefit

of this "virtual environment" is that what the person can see or do is limited only

by the imagination of the computer programmer.

Thesis students at the Air Force Institute of Technology (AFIT) have been

researching various aspects of low cost (under $100,000) flight simulators and virtual

environment systems since 1988. These research efforts have produced a variety of

software and hardware tools that can be reused in future applications (17, 40, 43).

The overall goal of this research at AFIT is to investigate the applicability and value

of such systems to the operational Air Force.

1.2 Problem

The focus of this thesis is the software design and implementation of a flight

simulator. The design of the flight simulator must serve as the foundation for current

1-1

and future AFIT research into flight simulation and virtual worlds. The design of

the new flight simulator must promote the following principles:

Modifiability If the design is to serve as a foundation for research, then it must be

easy to change.

Extensibility Winblad defines extensibility as "the ability of a program or system

to be easily altered" (60:265). The design must be constructed in such a

manner that future additions to the design can be made with a minimum of

effort. Adding to the design should not mean redesigning it from scratch.

Reusability The design should provide a format for reusing existing code and a

framework that enables the reuse of new code.

1.3 Scope

The subject of this thesis is the design and implementation of a flight simulator

using an object-oriented methodology. The design was implemented using the C++

programming language. The two main objectives of this thesis axe to present a

comprehensive, object-oriented software development process and to show how this

process was applied to the implementation of the flight simulator.

1.4 Assumptions

1.4.1 Implementation The flight simulator was a group effort. There were

four other individuals that worked on closely related projects. Because the topics

were so closely related, we were able to reuse code and parts of the flight simulator

design between projects. These projects are discussed in the theses by Brunderman,

Duckett, Gerken and Olson (8, 14, 20, 38).

1-2

1.4.1.1 Software We had access to the following sources of software:

1. The C++ Programming Language: "Not surprisingly, the most natural imple-

mentation target for an object-oriented design is an object-oriented language"

(47:296). "A language supports a programming style if it provides facilities

that make it convenient (reasonably easy, safe, and efficient) to use that style"

(56:19). The C++ programming language supports the object-oriented pro-

gramming style (56). Both the the AT&T C++ Translator and GNU C++

provided by the Free Software Foundation were available for our use.

The decision to use the C++ language was strictly pragmatic. We did

not have access to another object-oriented language that would run on the

platforms upon which the design was implemented.

2. Silicon Graphics and 4Sight Window Manager Libraries: Further software sup-

port is provided by the library of routines that comes with the Silicon Graphics

machines. These library routines allow the programmer to control the graphics

operations of the machine, keyboard input and the 4Sight window system.

3. UNIX Standard Library: We were working within the UNIX operating system.

We therefore were able to use UNIX standard system calls and "C" software

libraries.

4. Previous Thesis Efforts: The last source of code was code written in previous

thesis efforts. The routines that Captain Bob Filer wrote for controlling the

input devices used in his virtual environment display system were reused in the

flight simulator (although not in their pristine condition) (17). Captain Phil

Platt's code was used to help determine how to interface the joysticks with the

flight dynamics (40).

1-3

1.5 Summary

AFIT has been involved in research into low cost flight simulators and vir-

tual worlds since 1988. This year's efforts built upon past efforts and established a

framework for future endeavors. This framework had to be modifiable, extendable

and had to facilitate reuse. This framework for future research took the form of an

object-oriented design for a new flight simulator.

The objective of this thesis is to present an object-oriented software devel-

opment process that can be used to take an application from problem definition

through to implementation. These concepts will be discussed with respect to the

actual design and implementation of the flight simulator.

1.6 Thesis Overview

This document contains 6 chapters. Chapter 2 is a literature review of the

object-oriented paradigm. Chapter 3 explains the methodology used in the design of

the flight simulator. Chapter 4 highlights specific aspects of the methodology with

examples from the flight simulator. Chapter 5 describes how to reuse procedurally

oriented code in an object-oriented design. Chapter 6 reports on the results of the

thesis, gives suggestions for future research and provides some final comments.

1-4

II. Literature Review

2.1 Introduction

The purpose of this chapter is to lay the foundation for the discussions con-

tained in the following chapters. This chapter begins with an explanation of the

motivation for the object-oriented paradigm - the software crisis. This explanation

is followed by a description of the object-oriented paradigm itself.

This description is followed by views on how to apply the paradigm from anal-

ysis to design to implementation. A listing of the benefits and drawbacks of the

object-oriented approach follows how to apply the paradigm. The chapter concludes

with examples of successful applications of the object-oriented software development

strategy.

2.2 The Software Crisis

"The software crisis encompasses problems associated with how we develop

software, how we maintain a growing volume of existing software, and how we can

expect to keep pace with a growing demand for more software" (42:23). In this

vein, Brooks likens a software project to a werewolf: "it is usually innocent and

straightforward, but is capable of becoming a monster of missed schedules, blown

budgets, and flawed products" (7:10).

A cause of the software crisis is the complexity of software (3, 7). Booch de-

scribes complex programs as "industrial-strength software". "Stated in blunt terms,

the complexity of such systems exceeds the human intellectual capacity" (3:3).

Booch argues that there are five attributes of complex systems:

1. The system will possess a hierarchy. The system will be composed of inter-

related subsystems that have in turn their own subsystems, and so on, until

some lowest level of primitive components is reached.

2-1

2. The choice of what components in a system are primitive is relatively arbitrary

and is largely up to the discretion of the observer of the system.

3. The linkages between components will change less than the components them-

selveb.

4. Hierarchic systems are usually composed of only a few different kinds of sub-

systems in various combinations and arrangements.

5. A complex system that works is invariably found to have evolved from a simple

system that worked.

(3:10-11)

Another "essence" of modern software systems according to Brooks is "change-

ability" (7). "The software product is embedded in a cultural matrix of applications,

users, laws, and machine vehicles. These all change continually, and their changes

inexorably force change upon the software product" (7:12).

The consequence of this "changeability" is software maintenance. The cost of

software maintenance is significant. According to Somerville, "Evidence from exist-

ing systems suggests that maintenance costs are, by far, the greatest cost incurred

in developing and using a system" (54:536).

The previous discussions highlight the fact that developing software and chang-

ing it after it is built is a formidable problem. Is there a "silver bullet" to slay the

software project "werewolf"? While it may not be the "silver bullet" that provides

an order of magnitude improvement in reliability, productivity or simplicity, Brooks

throws his support behind the object-oriented paradigm (7:10,14).

2.3 The Object-Oriented Paradigm

The object-oriented paradigm is not a mature technology (11:156). Many

authors do not agree on what the elements of the paradigm are. Fortunately, there

were a number of elements of the object-oriented model that did appear most often

2-2

in the various works that I read: the object, the class, the relationship between

classes and interobject communication.

2.3.1 Objects What is the object-oriented way of making software? "Simply

stated, object-oriented development is an approach to software design in which the

decomposition of a system is based upon the concept of an object" (4:5). "Objects

are abstractions of like instances of any concept in the real world" (51:67). "Whereas

a procedure models an action, an object models some entity in the problem domain,

encapsulating both data about that entity and operations on that data" (50:95). "A

design is complete when every object that is referenced has been defined and every

operation is defined" (26:27).

2.3.2 Classes A class is a description of the data and the operations on the

data that make up the objects of the class. "An object is said to be an instance of

its class" (47:2). "Whereas an object is a concrete entity that exists in time and

space, a class represents only an abstraction, the "essence" of the object, as it were"

(3:93).

More generally, to borrow Coad and Yourdon's quote from Webster's dictio-

nary, a class is "A number of people or things grouped together because of certain

likenesses or traits" (10:52). The main point is that a "class" is a description of the

set of objects that share the same characteristics.

In addition to the description of the objects, the class may also have data

associated with it. The class data can be accessed by all instances (objects) of the

class (3, 37, 60).

2.3.3 Relationships Between Classes There are two types of relationships

between classes: inheritance and composition.

2-3

2.3.3.1 Inheritance Rumbaugh defines inheritance as "the sharing of

attributes (data) and operations (on the data) among classes ... A class can be

defined broadly and then refined into successively finer subclasses. Each subclass

incorporates, or inherits, all of the properties of its superclass and adds its own

unique properties" (47:3).

The previous definition of inheritance brings up a pertinent point. It is im-

portant to keep in mind that a class is nothing more than a description. The words
"object" and "class" are sometimes used interchangeably, or at least confusingly, as

evidenced by Rumbaugh's definition. What "sharing ... among classes", actually

means is that objects of that subclass will possess the same data and allow the same

operations on that data that an object of the superclass will. Also, objects of the

subclass will have additional data and/or operations that the subclass adds on top

of what the superclass specifies.

Inheritance is used to portray generalization and specialization (10:15). In-

heritance can best be thought of as an "is a" or "is a kind of" relationship between

classes (10:79). For example, a "truck" (subclass) can be thought of as a kind of
"vehicle" (superclass). The subclass is a more specific class than the more general

superclass that it is derived from. For example, a truck object will have the same

attributes and operations that a vehicle object has in addition to attributes and

operations common only to trucks.

The discussion thus far has described a relationship where one class inherits

properties from only one other class. "Multiple inheritance permits a class to have

more than one superclass and to inherit features from all parents. This permits

mixing of information from two or more sources" (47:65).

2.3.3.2 Composition The second type of relationship between classes is

the "composition" relationship. This means that one or more of the parts of a class

will be an object of another distinct class. Coad and Yourdon term this a "Whole-

2-4

Part" relationship (10:91). A simple example would be that an aircraft consists

of (or "has parts" or simply "uses") an engine, where "aircraft" and "engine" are

distinct classes of objects (10:92).

2.3.4 Communication Between Objects An object-oriented system functions

through interobject communication or "message passing". A major part of con-

structing an object-oriented system is deciding what operations will be provided by

each object and which other objects will need to use the operations (4, 10, 34).

2.3.5 Terminology The object-oriented paradigm has a terminology all its

own. Unfortunately, there is no standard vocabulary. "Object-oriented design

methodologies are still in their early stages. Like the various object-oriented pro-

gramming languages, terminology for the object-oriented mechanisms differs among

methodologies" (60:189). The purpose of this section is to present the various terms

of the object-oriented paradigm and their aliases. Terminology associated specifically

with the C++ programming language is included.

The first term listed will be the one that is used most frequently in the remain-

der of this thesis. The word will be followed by any aliases of the term. These aliases

may appear within verbatim quotations from authors included within the rest of the

thesis.

abstract class: "A class that has no instances. An abstract class is written with the

expectation that its subclasses will add to its structure and behavior, usually by

completing the implementation of its (typically) incomplete methods" (3:512).

attribute, data member, field, instance variable, member object, slot: "A

property or characteristic of an object" (60:262). "An attribute is some data

(state information) for which each object in a class has its own value" (10:119).

2-5

base class, ancestor class, parent class: With respect to an inheritance rela-

tionship, the superclass class is the more general of the two (or more) classes.

The "parent" of the relationship.

class, type: "A set of objects that share a common structure and a common be-

havior" (3:513). A class is a description or a template of the objects that are

members of the class.

composition, aggregation, Whole-Part, using: A type of relationship between

classes in which one class includes an object of another class. An object of the

class that uses the other class will have as an attribute an object of the class

being used.

derived class, descendant class, subclass, child class: With respect to an in-

heritance relationship, the derived class is the more specialized of the two

classes.

framework: A collection of classes that all relate to a specific problem domain.

They are specifically designed to be reused for applications within the problem

domain for which they were constructed.

inheritance, generalization, specialization, is a, is a kind of: A type of rela-

tionship between classes where one class is derived from one or several more

general classes. The derived class has the same characteristics of the more gen-

eral class(es) and may add its own attributes and/or methods to the resulting

class description.

interface, contract, protocol, signature: The set of methods that are provided

by an object. The protocol constitutes the outside view of the object with

respect to the whole system.

message: The act of one object using a method of another object. This usually

takes the form of a procedure or function call.

2-6

method, member function, operation, service: "A specific behavior that an

object is responsible for exhibiting" (10:143). Methods may modify the state

of the object.

object, entity, instance: "Objects are (run time) entities that encapsulate within

themselves both the data describing the object and the instructions for oper-

ating on that data" (60:269).

2.4 Major Principles of the Object Oriented Paradigm

As was the case with deciding what the elements of the object-oriented

paradigm are, different authors present varying opinions as to what major principles

are embodied within the object-oriented paradigm. The two principles most often

mentioned were abstraction and encapsulation.

2.4.1 Abstraction "Abstraction is the selective examination of certain aspects

of a problem. The goal of abstraction is to isolate those aspects that are important

for some purpose and suppress those aspects that are unimportant. Abstraction

must always be for some purpose, because the purpose determines what is and what

is not important" (47:16).

The concept of an object provides abstraction in the object-oriented paradigm.

An object is a product of the principle of data abstraction: "The principle of defining

a data type in terms of the operations that apply to the objects of the type, with the

constraint that the values of such objects can be modified and observed only by the

use of the operations" (10:14). This abstraction (the object) serves as a basis for

organization of thinking and of specification of a system's responsibilities (10:14).

"An abstraction focuses on the outside view of an object, and so serves to

separate an object's essential behavior from its implementation" (3:40). When

trying to gain an understanding of a system, the behavior of the object (the "what")

is what is important while the details of how the methods are implemented (the

2-7

"how") are not. The behavior is reflected in the set of operations provided by the

object that are used to modify the data contained in the object.

2.4.2 Encapsulation "Encapsulation (also information hiding) consists of

separating the external aspects of an object, which are accessible to other objects,

from the internal implementation details of the object, which are hidden from other

objects" (47:7). "Information hiding and abstraction are two sides of the same coin"

(39:90). "Abstraction and encapsulation are complementary concepts: abstraction

focuses on the outside view of an object and encapsulation prevents clients from

seeing its inside view, where the behavior of the class is implemented" (3:45).

Information hiding is built into the object-oriented paradigm through the class

construct. "The class construct supports information hiding through the separation

of the class interface and the class implementation" (28:51). The concept of the

class formalizes the idea that "no parts of an object-oriented program can operate di-

rectly on an object's data. Communication among a set of objects occurs exclusively

through explicit messages" (60:36).

Mullin provides a good example of information hiding: "The watch is an object,

one that satisfies my requests for current time. It does not need me to tell it how to

do its job!" (37:21).

2.5 How To Apply the Object-Oriented Paradigm

"At the most general level, three phases to the (software) lifecycle are agreed

upon: 1) analysis, 2) design and 3) construction/implementation" (25:144). Like

other software development methodologies, the object-oriented software development

process also has analysis, design and implementation phases. However, in contrast

to more traditional methods, the object-oriented development process is iterative

and the same constructs are used and expanded upon in each saccessive phase of

development (28:41).

2-8

The object-oriented software development cycle is a "unifying paradigm" (28).

The results from each phase are used directly in the following phases. This is in

contrast to the classical software development lifecycle in which the results of the

analysis (eg. data flow diagrams) have to be translated into some other form in the

design phase (eg. structure charts).

Another way that the object-oriented software development lifecycle differs

from more traditional approaches is that +he developer is expected to iterate freely

through the stages in the lifecycle. Booch terms this "round-trip gestalt design"

(3). "This style of design emphasizes the incremental and iterative development of

a system" (3:188).

The line between the phases is very thin at best. "The reason for this blurring

is that the items of interest in each phase are the same: objects. A second reason is

that the object-oriented development process is iterative" (28:41). Another possible

reason is that while object-oriented programming is well developed, techniques for

object-oriented analysis and design are not (10:156).

The next three sections are devoted to "drawing the line" between the three

phases of object-oriented software development. The first covers analysis, the next

section discusses design and the last explores object-oriented programming and the

C++ programming language. The fourth part of this section briefly covers the

various notations used for object-oriented software development.

2.5.1 Object-Oriented Analysis (OQA) "Object-oriented analysis is a

method of analysis that examines requirements from the perspective of the classes

and objects found in the vocabulary of the problem domain" (3:37). "The pur-

pose of object-oriented analysis is to model the real world system so that it can be

understood" (47:148). "Then the analyst focuses in on those matters pertinent to

his work, namely, describing the responsibilities of the system under consideration"

(10:9-10). This analysis focuses on the "what" of the system and not the "how".

2-9

"The analysis model serves several purposes: It clarifies the requirements, it

provides a basis for agreement between the software requestor and the software devel-

oper, and it becomes the framework for later design and implementation" (47:148).

A bibliography of the sources that I used in researching OOA are detailed in ap-

pendix A. The following activities are a synthesis of their methods: 1) Identify the

classes/objects of the problem space, 2) Identify the relationship between classes, 3)

Identify the attributes and methods of each class/object, and 4) Specify the inter-

object communication. All of the activities may overlap. Table 2.1 shows how the

strategy of each author relates to the synthesized list.

2.5.1.1 Identify Classes/Objects The purpose of this stage is to come

up with the classes/objects that make up the problem domain. The classes/objects

are identified with respect to the specific problem being modeled. "With OOA, an

analyst studies the overall problem domain, filters that problem domain understand-

ing to just those aspects which are within the system's responsibilities, and models

it accordingly" (10:53). The end result should be a model of the real world system

(47:148).

Various authors provide a number of tips on how to find classes/objects. Coad

and Yourdon (10) offer a checklist of where to look and what to look for:

2-10

Identify Classes & Objects Bailin - Steps 1,2,4,5, & 7
Booch - Step 1
Coad & Yourdon - Object Layer
Henderson-Sellers - Steps 1 & 2
Rumbaugh - Object Model (step 1)

Identify Attributes and Bailin - Steps 1,2,4,5, & 7
Methods Booch - Steps 1 & 2

Coad & Yourdon - Attribute Layer
Coad & Yourdon - Service Layer
Coad & Yourdon - Class & Object Templates
Henderson-Sellers - Step 2
Rumbaugh - Object Model (step 4)
Rumbaugh - Dynamic Model
Rumbaugh - Functional Model
Shlaer - Steps 1,2, & 3

Identify the Relationships Bailin - Steps 1,2, & 4
Between Classes Booch - Step 4

Coad & Yourdon - Structure Layer
Henderson-Sellers - Steps 6 & 7
Rumbaugh - Object Model (steps 3,5 & 6)
Shlaer - Step 1

Specify Interobject Bailin - Step 3
Communication Booch -Step 3

Coad & Yourdon - Attribute Layer

Coad & Yourdon - Service Layer
Coad & Yourdon - Class & Object Templates
Henderson-Sellers - Step 3
Rumbaugh - Object Model (steps 3,4, & 6)
Rumbaugh - Dynamic Model
Rumbaugh - Functional Model
Shlaer - Steps 2 & 3

Table 2.1. Comparison of OOA Techniques

2-11

Where to Look:

1. Observe the system first-hand.

2. Actively listen to problem domain experts.

3. Check previous OOA results from similar problem domains.

4. Check other similar systems.

5. Read, read, read (the problem statement and the customer request).

What to Look For:

1. Structures within the problem domain.

2. Other complete systems that the system interacts with.

3. Devices that the system interacts with.

4. Things or events remembered.

5. Roles played.

6. Operational procedures.

7. Sites or locations the system must be aware of.

8. Organizational units.

Shlaer and Mellor (51) offer the following list of what to look for:

1. Tangible things.

2. Roles of things.

3. Specifications or quality criteria.

4. Useful aggregations of equipment.

5. Steps in a manufacturing process.

Rumbaugh (47:153) and Booch (3, 4) recommend trying to identify

classes/objects by picking out the nouns in the problem statement. The nouns would

represent candidates for classes/objects of the system.

2-12

2.5.1.2 Identify the Relationship Between Classes The purpose of this

phase is to specify the structure inherent in the system. In this activity, the inher-

itance and composition relationships between classes is identified. The process of

recognizing and differentiating between an inheritance and a composition relation-

ship is central to this phase.

The first thing to do is look for common structures in the problem space in

order to find inheritance relationships. "Inheritance can be added in two directions:

by generalizing common aspects of existing classes into a superclass (bottom up) or

by refining existing classes in specialized subclasses (top down)" (47:163). Coad

and Yourdon recommend examining every class as a potential superclass or subclass

with respect to the problem domain (10:84,86).

The next step is to try to look for composition relationships. Coad and Yourdon

advocate looking for the following variations in the problem domain: 1) Assembly-

Parts, 2) Container-Contents, and 3) Collection-Members (and its different varieties)

(10:93).

It is not always clear as to when to specify an inheritance versus a composition

relationship. Booch offers a general rule of thumb: "if an abstraction is greater than

the sum of its component parts, then using relationships are more appropriate. If an

abstraction is a kind of some other abstraction, or if it is exactly equal to the sum

of its components, then inheritance is a better approach" (3:116).

An example of composition might make this rule of thumb easier to understand.

A telephone can be modeled by a relationship where the telephone class inherits

phone pads, microphones, and speakers (multiple inheritance) or the telephone class

can simply use the component classes (3:116). In this instance the sum of the parts

is greater than the whole - putting the pieces together in a telephone is greater

than simply each of the pieces lying in a group on a table. Also, it doesn't make any

sense to say that a telephone "is a kind of" phone pad (or any other component)

(3:116).

2-13

2.5.1.3 Specify Class/Object Attributes and Methods The "identity" of

each class/object is defined in this stage. The state and behavior embodied by each

individual object must be fully specified. This specification includes the attributes

of each object and the methods used to modify the attributes.

"Attributes describe values (state) kept within an Object, to be exclusively

manipulated by the Services of that Object" (10:120). "Attributes are properties of

individual objects, such as name, weight, velocity or color" (47). In order to identify

possible attributes, Coad and Yourdon suggest asking the following questions from

the perspective of a single object:

1. "How am I described in general?"

2. "How am I described in this problem domain?"

3. "How am I described in context of this system's responsibilities?"

4. "What do I need to know?"

5. "What state information do I need to remember over time?"

6. "What states can I be in?"

Attributes can also be objects of another class. This is a composition rela-

tionship between the class of the object and the class of the object being used as

an attribute. Thus, this phase can lead back to phase two. "If the independent

existence of an entity is important, rather than just its value, then it is an object"

(47).

The specification of the methods of the class/object come next. "One theme

underlying Object-Oriented Analysis is that eventually the analyst must provide a

detailed description of a system's processing and sequencing requirements" (10).

This begins with identifying "primitive" methods provided by each object.

Booch lists three common kinds of operations: a modifier, a selector and an

iterator (3). A modifier alters the state of the object. A selector accesses the state

2-14

but does not modify it. The iterator permits all parts of an object to be accessed in

some well-defined order.

There will be methods that need the methods of other objects or require that

some action(s) be performed prior to using a method. While this obviously leads to

phase 4 - interobject communication - it is important to specify these requirements

in terms of the method that needs them. This fact is recognized by all of the authors

but again, they give different ways of detailing the requirements.

Most of the authors advocate some type of state table or "state model" to

depict the lifecycle of an object (1, 10, 47, 51). This state model is also used in

some cases to further identify methods that will be needed or provided (47, 51).

Once the methods are identified, they must be explained in some manner so

that they can be implemented. Coad and Yourdon advocate "Service Charts" and

"Object State Diagrams" which are intended to portray services and state dependent

behavior (10:157). Shlaer recommends data flow diagrams (51:66). Rumbaugh

recommends using traditional data flow diagrams, natural language, mathematical

equations and/or pseudo code (47:179).

2.5.1.4 Interobject Communication Interobject communication goes by

many names: message connection (10), association (47), relationships (51) and

data flow between entities (1). The objective is to specify what methods are needed

by each object that are provided by other objects in the system.

As was mentioned in the previous section, this phase overlaps with phase 3.

Specifying what methods are required by an object from other objects often leads to

the identification of new methods. Thus, a state model (of some kind) can also be

used in this phase as well. "The processes required to drive an object or relationship

through its lifecycle are derived from the actions of the state model" (51:66).

2-15

2.5.2 Object-Oriented Design (OOD) "During analysis, the focus is on what

needs to be done, independent of how is done. During design, decisions are made

about how the problem will be solved, first at a high level, then at increasingly

detailed levels" (47:198). The focus now is on the "how" given that the analysis stage

has defined the "what". This section is devoted to OOD and will consist of three

parts: 1) a presentation of two methods of OOD, 2) a discussion of polymorphism,

and 3) a presentation of some guidelines to use in making a good design.

Bertrand Meyer remarked in 1988 that "The literature on object-oriented de-

sign (as opposed to just programming) is sparse" (34:334). The situation is very

much the same today. The majority of the relatively few sources that I was able to

find didn't attempt to differentiate between analysis and design, included analysis

activities in their description of OOD and/or simply added "and then implement the

objects" as a final step in their particular process (3, 4, 22, 50). A possible explana-

tion for this lack of material on object-oriented design comes from Henderson-Sellers:

"The design stage is perhaps the most loosely defined since it is a phase of progres-

sive decomposition toward more and more detail and is essentially a creative, not a

mechanistic, process" (25:144).

Two books that did present a definite design process were "Object-Oriented

Design" by Peter Coad and Edward Yourdon and "Object-Oriented Modeling and

Design" by James Rumbaugh and others. The views of these authors will be pre-

sented in the first part of this section.

One important term of the object-oriented paradigm has not yet been men-

tioned: polymorphism. "In general, polymorphism means the ability to take more

than one form. In an object-oriented language, a polymorphic reference is one that

can, over time, refer to instances of more than one class" (28:45). The topic of

polymorphism is discussed in the second part of this section.

There were more sources of advice on what makes a good design than sources

of how to construct a design. The third part of this section details proposed criteria

2-16

for measuring a good design gathered from various authors.

2.5.2.1 Two Methods of Object-Oriented Design This section presents

two methodologies for performing object-oriented design. The first method is advo-

cated by Peter Coad and Edward Yourdon (11). The second method is advanced

by James Rumbaugh et. al. (47). Both methods assume that OOA has been done

prior to design and that the products of the analysis form the basis for the design.

1.5.2.1.1 The Coad and Yourdon Method of OOD The Coad and

Yourdon method is based upon the construction of four components: 1) the Problem

Domain Component, 2) the Human Interaction Component, 3) the Task Manage-

ment Component, and 4) the Data Management Component (11:25).

"In OOD, the OOA results fit right into the Problem Domain Component

(PDC)" (11:36). The idea is to use the results of OOA and add to them within

the constraints of Coad and Yourdon's method. However, "These additions do not

mean it is time to hack up analysis results, whip up a little magic, and then suddenly

"poof" away into design" (11:36).

Coad and Yourdon offer a number of criteria to use when adding to the OOA

results during the construction of the PDC:

1. Reuse design and programming Classes - look for opportunities to reuse ex-

isting "off-the-shelf" classes.

2. Group problem domain specific Classes together - you can add a class simply

to group classes together within a Class library (in lieu of a more sophisticated

way to do this).

3. Establish a protocol by adding a generalization of a class - add a class to

formalize the interface of derived classes.

2-17

4. Accommodate the supported level of inheritance - it may be necessary to

revise the various inheritance relationships if multiple inheritance or any form

of inheritance is not supported.

5. Improve performance - may need to rearrange or combine classes to reduce

message traffic.

6. Support the Data Management Component - to support the Data Manage-

ment Component, each object must know how to store itself or must send itself

to another object designed to save objects

7. Add lower-level components - mostly a matter of convenience or to aid in

understandability.

8. Don't modify just to reflect team assignments - don't split up related classes

between different software development teams.

9. Review and challenge the additions to OOA results - whenever and wherever

possible, preserve the problem-domain-based organization established by OOA

results.

(11:39-48)

The Human Interface component captures how a human commands the system

and how the system presents information to the user (11:56). One of the driving

forces behind the object-oriented paradigm has been the construction of user in-

terfaces (60:9). Coad and Yourdon devoted a stage in their process exclusively to

examine the user interface in detail.

The strategy to design the Human Interface Component consists of the follow-

ing:

1. Classify the humans - who uses the software?

2. Describe the humans and their task scenarios - what does the user want to

do with the system?

2-18

3. Design the command hierarchy - what commands will be offered and how will

they be presented?

4. Design the detailed interaction - design the interface with good "human in-

teraction" principles in mind.

5. Continue to prototype - the best way for a user to make an evaluation is to

let them use a representation of the real thing.

6. Design the HIC classes - add the classes used specifically for implementing

the HIC (if they are not there already).

7. Design, accounting for Graphical User Interfaces (when applicable) - design

around one if it is available to use: Macintosh, Windows, Presentation Man-

ager, X Windows, and Motif.

(11:57-67)

The motivation for the Task Management Component is the determination of

concurrency within the system. Elements such as external devices, external inputs,

human interfaces, and the multiprocessing capabilities of the machine are considered

in this phase. The word "task" indicates concurrent behaviors in the system. The

strategy for determining tasks are as follows:

1. Identify event-driven tasks - a task may be designed to trigger upon the

receipt of a certain event.

2. Identify clock-driven tasks - these tasks are triggered at a specified time

interval.

3. Identify priority tasks and critical tasks - high priority tasks are those that

may need to be separated out in order to get the Service done within an urgent

time constraint. A critical task affects the continued operation of the system

itself.

2-19

4. Identify a coordinator - when multiple tasks exist within the system, it may

be necessary to add another task that coordinates them.

5. Challenge each task - keep the number of tasks to a minimum.

6. Define each task - define each task by what it is, how it coordinates, and how

it communicates.

(11:73-76)

"The Data Management Component (DMC) provides the infrastructure for

the storage and retrieval of objects from a data management system. The Data

Management Component isolates the impact of data management scheme, whether

flat file, relational, object-oriented (or some other one)" (11:80).

The first step in making the DMC is to design the data layout of objects with

reference to the data management scheme that will be used. The second step is to

define the services needed to actually store and retrieve the objects given the data

layout.

1.5.2.1.2 The Rumbaugh (et al) Method of OOD There are two

major steps to Rumbaugh's method: system design and object design. "System

design is the first design stage in which the basic approach to solving the problem

is selected. The system architecture is the overall organization of the system into

components called subsystems. By making high-level decisions that apply to the

entire system, the system designer partitions the problem into subsystems so that

further work can be done by several designers working independently on different

subsystems" (47:198-199).

There are eight decisions made in the system design phase:

1. Organize the system into subsystems - group together aspects of the system

that share some common property.

2-20

2. Identify concurrency inherent in the problem - identify which objects must be

active concurrently and which objects have activity that is mutually exclusive.

3. Allocate subsystems to processors and tasks - choose a software or hardware

implementation of the subsystem and allocate subsystems to processors. Must

keep performance and low interprocess communication in mind.

4. Choose an approach for management of data stores - choose between files

and/or databases.

5. Handle access to global resources - identify global resources and determine

mechanisms for controlling them. Global resources include things like tape

drives, processors, disk space and access to shared data.

6. Choose the implementation of control of software - choose between procedure-

driven sequential, event-driven sequential and concurrent control. Keep in

mind the implementation language and operating system.

7. Handle boundary conditions - decide how to start/initialize the system, how

to terminate and what to do in case of an unplanned termination.

8. Set trade-off priorities - make a decision as to what gets priority during the

development. Decide between such factors as speed, memory available, porta-

bility, functionality, cost and time available.

(47:199-211)

"The analysis phase determines what the implementation must do, and the sys-

tem design phase determines the plan of attack. The object design phase determines

the full definitions of the classes and associations used in the implementation, as

well as the interfaces and algorithms of the methods used to implement operations"

(47:227).

During object design, the designer must perform the following steps:

2-21

1. Combine the three models to obtain operations on classes - this step intends

to build upon the analysis results of their particular model (which consists of

three parts). While the majority of operations should have been identified in

analysis, it is perfectly fine to add more in the design phase.

2. Design algorithms to implement operations - choose algorithms that minimize

the cost of implementing them. You may define new classes and operations as

necessary.

3. Optimize access paths to data - may restructure class organizations to opti-

mize access, add attributes that store frequently calculated values or you may

rearrange execution order for efficiency.

4. Implement control for external interactions - implement the control strategy

decided upon in the system design phase.

5. Adjust class structure to increase inheritance - look for more opportunities

to derive commonality between classes.

6. Design associations - Rumbaugh's approach is deeply rooted in database the-

ory. The primary tool of the analysis is an entity-relationship diagram (of

sorts) showing associations between the entities (objects) in the system. These

associations most often become message passing between the objects in ques-

tion.

7. Determine object representation - decide whether to use primitive types (in-

teger, string, real, etc.) or implementation as an object. SSAN is a good

example. Do you make it an object or simply implement it as a string of 9

characters?

8. Package classes and associations into modules - group related pieces of soft-

ware together in one physical location (file).

(47:228-249)

2-22

2.5.2.2 Polymorphism In general, polymorphism means the ability to

take on many forms. Polymorphism, with respect to object-oriented design, concerns

inheritance and late binding (3:104). "This refers to the ability of an entity to refer

at run-time to instances of various classes" (34:224).

There is a difference between overloading and polymorphism. r'olymorphism

is a run-time, dynamic, phenomenon. With overloading, the compiler can statically

determine which method to call. The compiler determines the method to call based

upon the parameter profile of the method. The profile consists of the number and

types of the method's arguments and the types the method may return. If the

compiler can find a match, then it is considered overloading and not polymorphism

(3).

Inheritance is the mechanism that drives polymorphism. "The "is a" nature of

inheritance is tightly coupled with the idea of polymorphism. The idea is that if Y

inherits from X, Y is an X, and therefore anywhere that an instance of X is expected,

an instance of Y is allowed" (28:45). If the program does not explicitly reference

a method of X, the compiler cannot determine whether a reference to a method of

X actually applies to X or to a method of Y. This reference must be resolved at

run-time.

2.5.2.3 Measures of a Good Design Various authors present guidelines

or rules to use in order to help ensure a good design (3, 11, 16, 26, 28, 32, 34, 47, 61).

All of the authors either explicitly mentioned or based their rules upon the measures

of coupling and cohesion.

"Coupling is the "interconnectedness" between pieces of an GOD" (11:129).

Coupling refers not only to the number of interconnections but also to the complexity

of the interconnections (11, 34). The goal is to have the least amount of coupling

between abstractions (34:18-20). There should be as little message passing between

classes as possible. In addition, if two classes do communicate, they should pass as

2-23

little information as possible (34:20).

"A software component is said to exhibit a high degree of cohesion if the

elements in that unit exhibit a high degree of functional relatedness" (54:189).

"Cohesion measures the degree of connectivity among the elements of a single module

(and for object-oriented design, a single class or object)" (3:124). Cohesion can be

used to evaluate the methods and the overall structure of a class or object (16:145).

The goal is to have abstractions that are highly cohesive.

David Embley provides the most comprehensive treatment of the application

of the principle of cohesion to a design (16). His article provides rules to use to

evaluate the quality of abstract data types (ADTs) written in Ada. While an ADT

is slightly different from a class (56:13), the same basic principles can be applied

to both. Embley's methods are based upon comparing the types of the ADT with

the operations on those types. This compares to examining the attributes of a class

with respect to the methods provided by the class.

The following recommendations have been extracted from Embley's article and

modified so that they apply to the classes, attributes and methods of an OOD:

1. Draw a graph whose nodes correspond to the attributes and methods of the

class. Draw the links of the graph from each method to each attribute that

the method uses. If the resulting graph is disjoint, then you should consider

splitting the class into two (or more) separate classes. This is because there

are distinct sets consisting of methods and attributes used by those methods

that might have no relation to each other.

2. Try not to include a more general class within the definition of another. These

are candidates for an inheritance relationship.

3. Do not nest classes within others. Nested class definitions are included in

another class and can only be used by the class that contains it.

2-24

4. Try to create classes where the methods either use a single attribute or use all

the attributes. Classes that do not exhibit this behavior may be candidates

for further decomposition.

The following list was compiled from several sources. Most of these relate in

some way to the principles of coupling and cohesion. These principles are included

to give a more detailed view of how to arrive at a good design:

The Responsibility-Driven Approach: when designing a class, focus on what

the class is responsible for remembering and providing, not on the details of

exactly how the information is stored. This should ensure that the internal

structure of the object is not visible to users of the object (61).

The "Law of Demeter": each method can send messages to only a limited set of

objects: objects included as arguments to the message, the object of which

the method is a part, or to objects that are components of the object that the

method is a part of (32, 33).

Sufficiency: "the class captures enough characteristics of the abstraction to permit

meaningful and efficient interaction" (3:124). Does the object provide enough

methods to effectively use it?

Completeness: "the interface of a class captures all of the meaningful character-

istics of the abstraction" (3:125). Does the object contain a complete set of

methods?

Primitiveness: the methods of classes must be primitive. "Primitive operations are

those that can be efficiently implemented only if given access to the underlying

representation of the abstraction" (3:125). The concept of primitiveness is

included primarily to prevent the concept of completeness from being carried

too far. If a method (that may have been added for completeness' sake) can

be done by using simpler methods already available, then the method should

not be offered.

2-25

Inheritance guidelines: each subclass should be developed as a specialization of

the superclass. All public methods of the superclass should become part of the

public part of the subclass. The root class of an inheritance structure should be

an abstract model of the target concept (28:54). There are differing opinions

concerning subclass visibility of attributes inherited from the superclass. They

range from no direct visibility (53) to total visibility (33).

Method guidelines: each method of a class should use at least one of the attributes

of the class. A method should be public only if it is meant to be available

to users of the class. Methods of one object should not directly access the

attributes of a different class (28:54).

Clarity of design: Use a consistent vocabulary. The names in the model should

correspond to the names a reader would expect for that component. Use

consistent names for similar methods (11:141-143).

Generalization-Specialization depth: Do not create levels of specialization sim-

ply for the sake of doing it. Have a reason for creating each level in the inher-

itance hierarchy (11:143).

Simplicity: this applies to classes and methods. Excessive attributes are an in-

dication of poor factoring. Methods should not have too many parameters.

"If a message requires more than three parameters, on average, something is

wrong" (11:145). The implementation of the methods should be small as well.

"In general, if the method looks like a block-structured program, the classes

have been poorly chosen" (11:145).

Critical Success Factors: evaluate the design on the basis of its potential for

reuse, readability and performance (11:147).

Class hierarchies should be deep and narrow: "A class hierarchy having one

superclass and 27 subclasses is much too shallow. A shallow class hierarchy is

evidence that change is needed" (26:29).

2-26

Factor implementation differences into subclasses: by including methods

and attributes that are entirely implementation dependent into subclasses, the

superclasses become easier to reuse (26:35).

"Real world constraints always bastardize the most elegant design. Inevitably,

your design will be compromised to accommodate language shortcomings or perfor-

mance demands or a trade-off between reusability and development costs ... The

idea is to take a hard look at such compromises in light of "good design" principles

and whether the perceived constraint actually necessitates the change (11:148).

2.5.3 Object-Oriented Programming (OOP) "Simply stated, object-oriented

programming deals with the manipulation of objects" (21:2). "Object-oriented pro-

gramming is a methodology for creating programs using collections of self-sufficient

objects that have encapsulated data and behavior and which act upon, request, and

interact with each other by passing messages back and forth" (60:270).

"In the software lifecycle, object-oriented programming concentrates on the

design and implementation stages of software engineering ... because object-oriented

programming encompasses both design and implementation, it tends to blur the

distinction between the two. As Meyer (35:63) points out, this is an advantage since

design and implementation are essentially the same activity: constructing software to

satisfy a certain specification. The only difference is the level of abstraction: During

the design certain details are left unspecified, but in an implementation everything

is specified" (23:70-71).

"Object-orientation changes the focus of the programming process from pro-

cedures to objects" (60:iv). Object-oriented programming is an alternative way to

write software instead of using a procedurally based approach. It will not ensure

that the resulting software will be any better than a procedurally based program.

"A truly object-oriented design can be directly implemented only in an object-

oricnted language" (28:56). "An "object-oriented programming language" means

2-27

that the language has mechanisms that support the object-oriented style of program-

ming well. A language supports a programming style if it provides facilities that make

it convenient (reasonably easy, safe, and efficient) to use that style" (56:10).

Opinions differ slightly, but in order to support the object-oriented style of

programming, the language must allow: 1) "objects" in the sense that they are

data abstractions with an interface of named operations and a hidden local state, 2)

the concept that objects belong to a "class", 3) inheritance, and 4) polymorphism

(3, 21, 47, 56, 59, 60).

2.5.4 Notation Various notations have been introduced for use in the object-

oriented software development lifecycle (3, 10, 25, 34, 37, 47, 58). Each notation

was devised to capture the different elements and relationships in an object-oriented

design (according to the author's point of view).

The notations advocated by Wasserman, Coad and Yourdon, and Booch are

presented in figures 2.1 through 2.5.

2.6 Benefits and Drawbacks of the Object-Oriented Approach

The are many benefits as well as a few drawbacks to the object-oriented

paradigm.

2.6.1 Benefits of the Object-Oriented Approach The object-oriented

paradigm offers the following benefits: 1) it offers a way to manage complex software

development efforts, 2) it provides a "seamless" way to perform analysis, design and

implementation, 3) it promotes reusability, and 4) it promotes maintainability and

extensibility.

2.6.1.1 Manages Complexity The object-oriented paradigm attacks

complexity mainly through: 1) the two principles of abstraction and encapsulation

embodied in the paradigm, and 2) through the idea of inheritance to depict the

2-28

OOSD symbols

jmrm Fwnui

\4 I II/..

at a2 bo-
Om el - am Guaaic 2Pi

d I amd

Inn -- -- oa

am a 1
Adod ModnowVJ

-' ~ Miniu

*e 0m2

'd

la*l
7w Q

Figure 2.1. The Object-Oriented Structured Design Notation (58)

2-29

OQA/OD Notation SumMary

Class-&-Object

Nam (top section) Om&Obei Atinbulel

i k u2 Attributes (middle section)
A ttribe

l

ScrSv'e2 Services (bottom section)

Gen-Spec Structure Whole-Part Structure
__ I . I_ I

- Sp--t-l Sp. e S tim2 % : :

CIO-&-Ob~dl i Inkince Conection fr -&'b

Subject or Design Component No. In ab (pa O n S ebnM= d-

(may be exparded or coUap) h w =,t - ,, in

Figure 2.2. Coad and Yourdon's OOA/OOD Notation (10, 11)

2-30

Class Diagram
ailalrse the chu h&ruciwe, sn~Mchdm the ow ipcciof qu aaudl kamsa ad $hear relahamkhp

/ - f~~~ ap-ft- datac,y
as ,>-f-. pnvaftoI dw e goq

-m -pM- d- s-

Class Category Visibility

midufity il/nClass Category

Cardinality
0zero

Sero r NW"Class Relationship
+~ GOilo oe

nflwas(fex .5.14W

class Utility - - -. ifmi- (COMUAnc"ep)

J/ I--, A -iSD t~e

I~bi kwif (caf" type)

pivwe so don wkM09 bI"
....... Mdofimi

Bombi am Do~im - banImm no a1m

Figure 2.3. Booch Class Diagram (3)

2-31

Object Diagram
Ailutra Mhe objecstaru w cbdgg the vpeczin'ahm ~ a ofm bject and tAem relboathq

Object

--- 7 -w / -OU /.dc
pmus.o sts11 /dyim

Synchronization symbol

Object Relationship Yd
rd d "mo __A

Visibility Symbol
U ~ w - m

- w ts x (Ab)

E -MM
[?] p- (h

M lid-

Boc Obect Dupom - -w~ wtso

Figure 2.4. Booch Object Diagram (3)

2-32

Module Diagram
Ifrkdu Aeipikywm ,.f qjcLu mda" Lift-..

Subsystem Main Subprogram Generic Subprogram
pro specifitica subprogm body

~ Package Generic Pake
Paecao packageb

Module Visiblty --

Task Task
specificatrin bd

Process Diagram

Procesor Connection Device

WAma .bv - dA

Figure 2.5. Booch Module and Process Diagrams (3)

2-33

hierarchy in a system (3:39,45). "The most important point scored by 00 techniques

is, however, that they are natural and intuitive" (29:15).

The concept of an object is an abstraction of a real world entity in the prob-

lem domain that communicates with other objects only through specifically provided

methods. Encapsulation is exemplified in an object by the fact that the implemen-

tation of the object's state and methods is hidden.

The object-oriented approach to building software can be applied to all five of

Booch's five attributes of complex systems (given in section 2.2, from (3:10-11)):

1. The system will possess a hierarchy. The system will be composed of interrelated

subsystems that have in turn their own subsystems, and so on, until some

lowest level of primitive components is reached.

- The inheritance and composition relationships between classes directly model

hierarchy in a system. "By identifying these hierarchies in our design, we

greatly simplify our understanding of the problem" (3:54).

2. The choice of what components in a system are primitive is relatively arbitrary

and is largely up to the discretion of the observer of the system.

- Objects are the components of an object-oriented system. The objects will cor-

respond to their counterparts in the "real world". Their "primitiveness" is

driven by the problem being solved.

3. The linkages between components will change less than the components them-

selves.

- This is addressed through abstraction and encapsulation represented by the ob-

ject. An object is altered only by the methods provided by the object (the

linkage between components) while the implementation of the object is hidden

from the user(s) of the object. Therefore, any changes to the implementation

are localized to the object. There will be no "popcorn" effect if the innards of

an object change (11:129).

2-34

4. Hierarchic systems are usually composed of only a few different kinds of subsys-

tems in various combinations and arrangements.

- Again, the idea of inheritance addresses this aspect of complexity. Inheritance

allows a designer to express the commonality found in a system (3:56).

5. A complex system that works is invariably found to have evolved from a simple

system that worked.

- Object-oriented software construction is primarily a

"bottom-up" approach (34:325). Simple objects can be implemented and

tested before being "plugged in" much like a "software IC" as a part of a more

complex system (12).

2.6.1.2 Seamless Paradigm The object-oriented software development

process can be used from analysis to design and through to implementation. "The

design philosophy of the object-oriented paradigm takes a modeling point of view.

This allows the designer to work with one approach which begins in the problem

domain and transitions naturally into the solution domain" (28:60).

"It is easier to design and implement object-oriented applications because the

objects in the application domain correspond directly to objects in the software

domain. This one-to-one correspondence eliminates the need to translate a design to

a less natural programming language representation, even though most programmers

have been trained to do this translation" (60:45).

2.6.1.3 Promotes Reusability The object-oriented paradigm provides

support for reusability through classes and the relationships between them: inheri-

tance and composition. "Every time an instance of a class is created, reuse occurs.

This means more than a declaration of a variable of a specific type. The major

difference is that the resulting class instance is a much more complex structure than

2-35

a simple variable. An instance of the class provides a combination of data structures

and operators on those data structures" (28:52).

The class constitutes a more powerful unit of reuse than simply reusing a

procedure. "The benefit of reusing an artifact is related to the artifact's abstraction

level. The higher the abstraction, the higher the potential payoff" (46:342). "The

appeal of all this is the possibility that the software industry might obtain some of

the benefits that the silicon chip brought to the hardware industry; the ability of a

supplier to deliver a tightly encapsulated unit of functionality that is specialized for

its intended function, yet independent of any particular application" (13:26).

"Class inheritance supports a style of programming called programming by

difference, where the programmer defines a new class by picking a closely related

class as its superclass and describing the differences between the old and the new

classes" (26:23). The programmer immediately reuses the classes in the inheritance

hierarchy above the new object being created.

Inheritance and composition extend the reusability of classes. "Related objects

may be grouped together to form frameworks and toolkits" (46:343). "A framework

is a set of classes that embodies an abstract design for solutions to a family of related

problems, and supports reuse at a larger granularity than classes" (26:22).

Through the support that the object-oriented paradigm provides for reuse, the

paradigm has the potential to transform programming from a solitary cut-to-fit craft

into an organizational enterprise like manufacturing (13:27). "This means letting

consumers at every level of an organization solve their own software problems just

as home owners solve their plumbing problems: by assembling their own solutions

from a robust commercial market in off-the-shelf subcomponents, which are in turn

supplied by multiple lower level echelons of producers" (13:27).

2.6.1.4 Promotes Ma, ,tainability and Extensibility The

object-oriented model supports the principles of maintainability and extensibility

2-36

through encapsulation and inheritance. Through encapsulation the object-oriented

paradigm allows programmers to build systems that are resilient to change.

According to Booch, tile linkages between abstractions will change less than

the abstractions themselves (3:11). The paradigm allows you to package volatility

within problem-domain constructs (classes), thereby providing stability over chang-

ing requirements and similar systems (11:17). Maintenance is thus made easier

because it becomes localized in specific spots - classes.

Encapsulation (as embodied by the concept of the class) also facilitates exten-

sibility. "The object-oriented design process produces designs which facilitate the

integration of individual pieces into complete designs. The narrow, clearly defined

interface of a class supports integration with other software components. The narrow

interface corresponds naturally to the observable behaviors of the real-world entity

modeled by the class" (28:52).

Inheritance makes maintenance easier. "Inheritance mechanisms reduce the

likelihood of human error because changes in one class are automatically propagated

to all subordinate classes" (60:49). The alternative would be to modify all the

methods everywhere they occurred.

Inheritance facilitates the extension of existing programs. "It allows extensions

to be made to a class while leaving the original code intact. Thus, changes made by

one programmer are less like to affect another" (26:23). "Class inheritance permits

a new version of a program to be built without affecting the old" (60:48).

2.6.2 Drawbacks of the Object-Oriented Approach There are three acknowl-

edged drawbacks to using the object-oriented approach: 1) performance consid-

erations, 2) startup costs, 3) lack of direct support for constraints present in an

object-oriented system.

2-37

2.6.2.1 Performance Booch discusses possible performance risks

involved in using object-oriented languages (3:216-217). The first risk derives from

late binding made necessary by polymorphic references. Booch indicates that poly-

morphic method invocation takes from 1.75 to 2.5 times as long as a statically de-

termined method call.

A second source of overhead comes from the "layering" evident in object-

oriented systems. Methods are generally small and tend to build on lower level

methods. "This plethora of methods means that we end up with a glut of method

invocations. Invoking a method at a high level of abstraction usually results in a

cascade of method invocations; high-level methods usually invoke lower level ones,

and so on" (3:216).

A third source of performance degradation comes from the dynamic allocation

and destruction of objects. Dynamic allocation of objects costs more in computing

resources than statically allocating an object. "For many kinds of systems, this

property does not cause any real problems, but for time-critical applications, one

cannot afford the cycles needed to complete a heap allocation" (3:217).

2.6.2.2 Startup Costs Booch and Coad (3, 11) both address the prob-

lems that are encountered when an organization moves to an object-oriented ap-

proach. "Using any such new technology requires the capitalization of software

development tools" (3:217). "It is common to see organizations adopting object-

oriented analysis and design if they are using a language like Ada or Smalltalk or

if they view the transition from C to C++ as relatively minor. On the other hand,

it is less common to see business-oriented data processing organizations adopting

object-oriented analysis and design - simply because it is less obvious how it will

work with COBOL" (11:156-157).

Another drawback is that the object-oriented paradigm requires a fundamen-

tal shift from the traditional thought processes involved in making software. "Using

2-38

object-oriented design for the first time will surely fail without the appropriate train-

ing. An object-based and object-oriented programming language is not "just another

programming language" that can be learned in a three day course or by reading a

book. It takes time to develop the proper mindset for object-oriented design, and

this new way of thinking must be embraced by both developers and their managers

alike" (3:217-218).

2.6.2.3 Constraints "A constraint is a numeric or geometric relation-

ship between objects. They are described in terms of visible aspects of the objects

in question, and they define a set of rules limiting the number of correct states of

the set of objects. Constraints comprise two aspects: One aspect is the declarative

aspect; the definition of the constraint. The second aspect is the procedural aspect,

namely the actions taken when the constraint is violated" (29:27).

"An example of a constraint would be that two views of the same data remain

consistent (for example, bar graph and pie chart views)" (19:25). Another would

be that objectl must always be 5 pixels to the left of object2 (29:28).

The problem is that the object-oriented paradigm does not directly support

constraint programming. Constraints must somehow be reflected in the attributes

and methods of the objects in the system. "Currently, the combination with con-

straint programming remains one of the unsolved problems of object-oriented pro-

gramming. On the one hand, we want to have the encapsulation and modular aspects

advocated by the object-oriented approach. On the other hand, we want to have a

more declarative approach that emphasizes more on what we want to solve, instead

of how we should solve it" (29:28).

2.7 Successful Applications of the Object-Oriented Approach

While object-oriented programming has been around since the early 60's, the

object-oriented approach to software development is relatively new. Coad and Your-

2-39

don advise that "you will have to decide for yourself" whether the object-oriented

paradigm is sufficiently mature to attempt to use (11:156). Despite this relative

immaturity, the object-oriented approach has successfully been applied to a wide

range of software applications.

Object-oriented techniques have been used at the General Electric Research

and Development Center (GE R&D) to develop compilers, graphics, user interfaces,

databases, CAD systems, simulations, meta models, control systems, and even an-

other object-oriented language (47:9). AT&T Bell Laboratories used C++ to con-

struct a program debugger (9). The Apple Corporation used object-oriented tech-

niques in making the MacApp object-oriented application framework in 1985 (60, 3).

Both Keith Gorlen and Grady Booch have produced low level class libraries for gen-

eral purpose use (21, 5).

Object-oriented techniques have been successfully used to implement various

types of simulations. The Software Engineering Institute and ITT Research Institute

have both used object-oriented practices in making flight simulators (30, 31, 36).

The Mitre Corporation has produced a Large Scale Air Defense Simulation (62).

The USAF is currently developing an object-oriented simulation environment for

airbase logistics (41). The general applicability of the object-oriented paradigm to

simulations has been advanced by various authors (15, 2, 48).

2.8 Summary

This chapter has introduced the current view of the object-oriented paradigm.

The object-oriented paradigm represents a more intuitive way to program than using

procedurally oriented techniques. The object-oriented approach is based upon the

concept of an object: an abstraction that contains both data and the operations

that modify the data. The implementation of the object is hidden. Objects in an

object-oriented system model their counterparts in the "real world" of the problem

domain.

2-40

Object-oriented programming has been around since the early 60's but the

techniques for object-oriented analysis and design are much more recent. Techniques"

for object-oriented analysis, design and implementation all operate upon the same

building blocks - the objects of the system. Thus, the object-oriented paradigm is

seamless in that there is no translation of products from one phase of the lifecycle

to the next.

The object-oriented paradigm offers a way to manage the complexity inherent

in software systems. It produces systems that are more reusable, maintainable, and

extendable than systems developed with procedurally oriented methods (60). The

object-oriented strategy has been applied to a wide range of applications. Object-

oriented techniques will provide the clarity and flexibility essential to the successful

development of tomorrow's complex systems (60:11).

2-41

III. Methodology

3.1 Introduction

This chapter describes the steps taken in the phases of the formulation and

implementation of the design for the flight simulator. The methodology presented is

a synthesis of the various practices and suggestions that were described in chapter

2. The discussion begins with the analysis phase of the project and introduces the

notation used. The next section covers the high level design techniques employed in

continuing beyond the analysis. The last section of this chapter details the low level

design (implementation) portion of the system.

Despite the fact that these phases are being presented as distinct and in se-

quence, in practice, this was certainly not the case. The development of the design

was an iterative process. Once the initial analysis was done, the smaller parts were

fully designed and implemented. During the course of the design and implementa-

tion, the nature of the relationships between objects that had not reached the design

stage and those that did became much more evident. This, in turn, lead to changes

in the analysis results.

The iterative nature of the process also applied to the activities performed

during the separate phases of analysis, high level design and low level design. These

steps were by no means performed in sequence nor were they done in isolation.

Except where a specific sequence is indicated, they are best considered as activities

that must be performed along the way to a complete product. It didn't matter

when they were done or in what order they were accomplished, only that they were

completed. They are not meant to be used as part of a "cookbook" approach.

One of the effects of this iteration was that the line between the phases became

blurred. Parts of the design were fully implemented at the same time that other parts

were still being more fully analyzed. Elements of all of the phases could probably be

3-1

found in any object at any time. The proportions of elements fitting into each phase

simply shifted from analysis to high level design to low level design as the process

progressed. The method can be summarized as follows:

I. Analysis: Construct a model of the "real world" system.

A. Context Diagram: Define the problem and its boundaries.

B. Identify Classes/Objects: Identify the major abstractions in the system

with respect to the problem to be solved.

C. Identify Structures: Find the relationship between the classes in the sys-

tem.

D. Identify Object Attributes: Define the characteristics of each object.

E. Define Methods: Specify what functions each object needs and provides.

II. High Level Design: Transform the model gained in analysis into a form suitable

for a computer.

A. System and Structure Refinement: Map how objects can be implemented.

1. Class Refinement: Examine each class from the analysis with respect

to reusability concerns.

2. Identifying Code to Reuse: Save development time by using existing

code.

3. Resolving Multiple Relationships: Specify how multiple relationships

are represented in the system.

4. Inheritance Structure Refinement: Factor out commonality between

classes and standardize protocols.

B. Concurrency: Identify the possible concurrency in the system.

C. External Data Requirements: Handle external sources of data and persis-

tent object storage.

3-2

III. Low Level Design/Implementation: Continue design activities into the coding

of the system.

A. Object Representation: Decide how to implement the object: a class, data

type or static object.

B. Implement Object Methods: Implement the methods with respect to the

design strategy. Can add new attributes to help out.

C. Establish Object Visibility: Ensure necessary data paths exist and explic-

itly hide information within each object.

D. Identify Polymorphic Methods: Specify appropriate polymorphic methods.

3.2 Analysis

While the focus of this thesis is the design of the flight simulator, it was not

possible to simply start with a design. The analysis had to be done first in order to

have a starting point for the design. I was not trying to analyze the general problem

domain of aircraft flight. I concentrated my efforts on analyzing an existing aircraft

flight simulator. The main reasons for this were: 1) the problem domain of a flight

simulator is more defined than the more general problem domain of aircraft flight,

and 2) I had access to a variety of simulators. The analysis was based upon the

things that I could see by using the simulator and was not concerned with the actual

computer code used to run the simulation.

The main purpose of the analysis phase was to produce a model of the problem.

The product of the analysis was a high level view of the classes and objects in

the simulation. This high level view was then used to make an initial division of

labor between the three individuals implementing the design. This allowed all three

individuals to essentially work alone on their respective portions until the time came

to integrate the pieces.

3-3

The initial analysis was perhaps the most important part of the process. The

success of the initial analysis can be measured by the amount of interaction nec-

essary between personnel who are assigned to work on supposedly separate objects

(or object hierarchies). A low amount of necessary interaction indicates a good ini-

tial analysis. This was the case with this system. Development of the supposedly

independent pieces did, in fact, proceed independently. If a high amount of com-

munication becomes necessary, it is a signal that the pieces may not have been as

distinct as first thought.

3.2.1 The Analysis Process The analysis process used was based mainly upon

the methodology advocated by Peter Coad and Edward Yourdon (10). Without

going into detail and comparing one author's method with the next, I chose Coad

and Yourdon's method because: 1) it is widely applicable, 2) it covers the four

components of analysis summarized in chapter 2, 3) it makes almost no assumptions

about how the analysis will eventually be implemented (it assumes only inheritance),

and 4) it includes a notation that can graphically depict the elements of the analysis

and the design. The specific steps in the analysis process were:

1. Perform a context analysis.

2. Identify the classes/objects.

3. Identify structures - inheritance and whole-part relationships.

4. Identify object attributes.

5. Define methods (includes interobject communication).

The last four steps are included in Coad and Yourdon's method, the first step is not.

The purpose of the first step is to define the problem prior to analyzing it.

The context analysis provided a general definition of the problem and what the

boundaries of the system were to be (57). The context analysis consisted of four

elements:

3-4

1. The problem statement: a one paragraph description of the system under

consideration.

2. A concept map: a graphical depiction of the system within its immediate

environment.

3. An event list: a list that delineates the outside stimuli that the system must

react to.

4. A narrative constraint list: defines the economic, technical and legal constraints

imposed upon the development of the system.

The context analysis is included as appendix B.

Once the problem was defined, the analysis began. The second step in the

process was to identify the classes/objects in the system. This was accomplished by

using the tips for finding classes/objects listed in section 2.5.1.1.

The best sources of information used to identify the classes/objects of the

new flight simulator were existing flight simulators. I was able to observe and fly

several different flight simulators ranging from a multi-million dollar model to several

different pc-based simulations. The most useful simulations were the "Flight" and

"Dog" flight simulators made by Silicon Graphics Corporation. "Flight" and "Dog"

were particularly useful because they ran on the workstations on which we were going

to implement the new simulator.

The existing flight simulators were used to identify classes/objects mainly

through the entities present in the simulator, information that was tracked, and

the external devices that the simulators interacted with. The most significant real-

ization was that the main components of a simulator were what was visible to the

user - in essence, the simulator consisted mainly of moving pictures. The informa-

tion that was tracked pointed to candidate objects/attributes and it was a natural

progression from identifying external devices to making them classes/objects.

3-5

"Flight" and "Dog" also served another purpose. With no detailed specification

nor specific guidance pertaining to the capabilities of the new system, the two SGI

programs were used as examples of what the new simulator should provide. Thus, the

SGI programs served as the main source of the requirements for the new simulator.

The third step in the analysis process was to determine the structure inherent

in the system. The strategy was to decide which objects were related and then

classify the relationship as a composition (or "uses") or as an inheritance (or "kind

of") relationship. The simple test was to ask whether object "A" was a kind of

object "B" or whether "B" simply used "A".

The problem was analyzed from the knowledge that was available from the

domain in question. While some relationships were easy to classify, there were no

hard and fast rules to apply that would exactly specify the type of relationship

between two or more objects.

The question of multiple inheritance slightly complicated matters. As it turned

out in the analysis phase, there were no objects that appeared to require a multiple

inheritance relationship. We did eventually implement one object using a multiple

inheritance relationship but this was only to make the object easier to use. Grady

Booch's rule of thumb about "the sum of the parts" (3:116) worked well in deter-

mining if a relationship was truly one that required multiple inheritance.

The next step was to specify the attributes of the objects. This step required

the most knowledge of the problem domain and the requirements of the system. An-

swering questions from the perspective of an object such as "How am I described?",

"What do I need to know?" or "What state information do I need to remember over

time?" (10:121) are impossible if one knows nothing about the object or what is

required of it in the context of the system. The only recourse is to learn the necessary

information.

3-6

The basic strategy for determining attributes was to use an initial cut at the

overall composition of the system and attack the more familiar objects first. The

idea was to specify the objects that were the most understood at the outset. The

benefit of this was that the system was more defined when it came time to attack the

more complex objects later in the analysis process. As an example, the hierarchy

of window objects was fully specified before the objects that contained the flight

dynamics of the simulator. This made the task of specifying the less understood

"flying" objects easier later on.

The last step in the analysis process was to specify the methods provided and

required by each object. The first action was to specify the "selector" and "modifier"

functions for each attribute of each object. These were specified first because they

are the simplest methods of a class. A "selector" function simply returns the value

of an attribute while a "modifier" allows the user of the object to set an attribute

(3). These are the "Get" and "Set" methods that are present in the current design

(refer to appendix C).

Once the primitive selector and modifier services were specified, the next step

was to add the "characteristic" services to the object. I relied upon the observa-

tion that objects will not normally exist simply to allow users to get and set their

attributes one at time. There was always a reason why particular attributes were

grouped together the way they were. The characteristic functions defined the real

purpose of the object and they depended upon what the object existed to do.

The last step in the specification of methods was to define what methods

were needed from other objects - the interobject communication. The interobject

communication was determined by the needs of the characteristic functions. The

case encountered most often was where one object was a component of another and

the composite needed the selector or modifier functions of the component. Every

attempt was made to reduce or eliminate the need to get information from an object

that was not a component or part of the inheritance structure of the calling object.

3-7

3.2.2 The Notation Coad and Yourdon's notation for graphically depicting

the design was the basis for the notation used in this thesis (see figure 2.2). While

I have added or modified this notation in certain areas, the essential strategy is the

same. I have added to the notation to give a better view of the actual character,

requirements and limitations of the classes/objects in the design.

There are two basic types of notation: the system notation and the object nota-

tion (see figures 3.1 and 3.2). The system notation depicts groups of classes/objects

and the relationship between them. The object notation covers one class of objects

in detail.

3-8

iiAbstract class name I Static
Class Obet

static object
<- abstract class implemented inside

class 2

B inheritance

I- interobject communicatioA ----

D

Class I composition (uses pointer)

cardinality of relationship

Figure 3.1. System Notation

The purpose of the system notation is to give a high level view of the layout of

the system. In the system notation, the inheritance and composition relationships

are depicted as well as any needs for services from objects outside the hierarchy of a

particular object. Only the name of the class/object is listed in each rounded box.

The number of classes/objects shown on any diagram should not be more than can

be understood at one time. (Coad and Yourdon recommend 7-9).

3-9

Class 1

/C-Class Name3

r as2" attribute 1 attribute 7--at6uetri~etrbt 3
attribute 2 attribute 76-

method 2 method 7

-------- method 3 method 8 Cls 5
method 4
method 5

Figure 3.2. Object Notation

The object notation is a detailed view of one object at a time. The object

notation uses the same symbci.s as the system notation and adds more to it. The

rounded box for the object being shown is divided in three areas. The name of

the class/object is located in the top area. The attributes of the object are located

in the middle section and the services are listed in the bottom. Arrows are drawn

from services to system level depictions of other objects if services axe needed from

the other object. All inheritance and composition involving the target object axe

depicted as well. The purpose of the object notation is to depict how the object is

coupled to other objects. The notation that I have devised contains design and C++

specific parts:

3-10

1. The inheritance symbol has been changed from a half circle to a full circle

with an "I" in the middle. A small "D" is placed next to the line going to the

derived class and a small "B" is placed on the line to the base class.

2. The composition triangle now contains an asterisk if the component is actually

a pointer to an object of that class.

3. Pure virtual (abstract) classes are drawn with thicker lines than normal classes.

4. Rounded boxes depicting classes implemented as static data members and

methods are shown inside a dashed box with the class within which the static

members were implemented.

With these additions, it became possible to get a much more detailed view of

the design. However, the design and implementation dependent notations should

not be used in the analysis phase. The only portions that should be used in analysis

are the inheritance, composition, class/object, and line of communication graphics.

All of the other portions are design or implementation dependent and should not be

added until the design and implementation phases.

3.3 Design

With the initial analysis complete, the design of the system began. As Meyer

points out, object-oriented design is primarily a bottom up approach (34:325). The

reason for this is that it is not possible to construct the composite higher level objects

of the system without first making the simpler objects of which they are composed.

This was certainly the case with the flight simulator. The simpler (least complex or

well understood) objects were designed and implemented first.

While it was certainly true that the overall process was primarily bottom up,

we were able to do some top down design as well. As simpler objects were created,

they were used in higher level objects. In this manner, we were able to incrementally

complete the higher level objects as more primitive ones became available for use.

3-11

The bottom up nature of object-oriented development turned out to be a ma-

jor factor in managing the complexity of the system as a whole. Once the initial

analysis was done, the primitive objects were the first to be implemented. This had

two effects: 1) the completed objects clarified the design, 2) once constructed, the

complexity within the primitive objects could then be ignored.

3.3.1 Good Design/Designing For Reusability There were many suggestions

offered for making a good design in chapter 2. The overriding concerns that mo-

tivated the majority of the suggestions were to reduce coupling, increase cohesion,

and to enhance encapsulation of the details of an object. These three qualities lead

to classes that are reusable, extendable and maintainable. The overall idea is to pro-

duce a class that users can simply pick up and immediately use in other applications

(like Cox' software ICs).

The main goal in designing and implementing each class of this design was

reusability (maintainability and extensibility were derived from designing for

reusability). While I tried to use all of the suggestions in chapter 2, I ended up with

additional guidance to use when designing classes.

The main idea was to look at the class from the perspective of a potential user

of the class. All classes were constructed from the standpoint that they may be used

in other, possibly unrelated applications. The most effective way of accomplishing

this was to look at the class in isolation from the rest of the system being built.

The classes were designed to be easy to use. Using the class means two things:

the use of instances of the class and using the class as a base class from which

to derive more specialized classes. Making the class easy to use means something

different for each type of usage.

Making the class easy to use for a designer who plans to use the instances of a

class is centered totally upon the methods that are offered by the class. When used

in this manner, the class can be viewed as a "black box". Information hiding is the

3-12

overriding principle in making objects of the class easy to use. The designer intent

upon reusing the class is not concerned with the internal details of the class, only

with what can be done with/to objects of the class.

The question becomes what kind of functionality to provide through the meth-

ods of the class. The design concepts summarized in chapter two that are particularly

applicable in this situation are sufficiency, completeness, primitiveness, clarity of de-

sign and simplicity. Allthough it was not mentioned in chapter 2, the concept of

"robustness" also applies. In short, the designer should provide all useful methods

that the object could provide using only the state information contained within it.

The concept of "robustness" means that the object should be built to be tol-

erant of errors. The object should have the capability to somehow inform the user

that a method has failed. The object should not crash the program due to an error.

The error should be passed back to the user so that the user can decide what to

do. In addition, every effort should be made to ensure that users are prevented from

ever causing an error condition in the first place.

Making classes easy to reuse as base classes is a much tougher exercise than

simply designing a class where the objects of the class are to be the focus of reuse.

The main problem is that reuse in this context is a "white box" exercise. The

designer who intends to reuse the class as a base class must necessarily know the

details of the implementation of the potential base class - an idea contrary to the

principle of encapsulation (53).

The problem with designing reusable base classes does not lie with child class

accessibility to attributes of parent classes. A measure of a good inheritance structure

is when each more specialized class can truly be considered as possessing all the

attributes of the parent class (and all its ancestors). In general, there should not be

a situation in which a designer should hide an attribute in a superclass from lower

level classes - a designer should not seek to "uninherit" attributes.

3-13

Seeking to "uninherit" attributes or methods is a sign of poor factorization. If

it becomes necessary to hide attributes, then the question becomes "was child class

B really "a kind of" base class A?". The inheritance hierarchy in question should be

rearranged and/or split up so that only the methods or attributes that are needed

are actually inherited. The benefit of this is a more understandable structure.

The main problem with designing reusable base classes lies with using the

methods of the parent class and its ancestor classes in implementing the new child

class. At this level, the concern is with reuse of methods. Because there is no

encapsulation, this becomes very similar to reusing procedures in a procedurally

based program. The attributes of the class hierarchy can be considered as global

variables with respect to the methods.

Cohesiveness became the primary concern when building methods of classes

intended for use as base classes. While this resulted in a few more methods in

such classes, the classes were more reusable because the methods could be used

more effectively. Making smaller and more cohesive methods reduced the need for

duplicating code between parent and child classes.

The methods of base classes were also made to be self-contained. This made

using them simpler in that a user would have less to worry about when trying to

combine simpler methods to construct a higher level function. Making the methods

as self-contained as possible extended the reusability of the class itself.

3.3.2 High Level Design The purpose of the high level design phase was to

make decisions concerning the form that objects would take in the implementation.

The purpose of this phase was to bring the analysis into the realm of design. The

result was to put the products of the analysis into a form suitable for implementation

on a computer. The focus turned from the "what" of analysis to the "how" of design.

The first action of the high level design process was to settle upon a "design

strategy" for the construction of the design. This corresponded to step 8 of Rum-

3-14

baugh's "system design": "Set trade-off priorities - make a decision as to what

gets priority during the development. Decide between such factors as speed, mem-

ory available, portability, functionality, cost and time available" (47:199-211). The

design strategy served as the overriding concern when making design decisions.

We made the decision to give speed of the running simulation highest priority.

Real time computer graphics such as those that we were planning to display in the

flight simulator place enormous demands upon the processing power of the computer

(49:48). Given this and the fact that we had a 15 frame per second requirement for

the system, the natural choice was to optimize the design for speed.

The potential memory requirements were the secondary concern. We realized

that the storage requirements for the system could be a potential problem. However,

the general attitude at the start of the effort was that we would let the virtual memory

manager handle these problems. While we made some design decisions with memory

in mind, speed considerations always took precedence over storage concerns.

The method that I used to make this particular design is a composite of the

practices advocated in chapter 2 with some additions. The design practices that

were used can be distilled into three main subject areas: 1) refinement of the system

and its structure, 2) concurrency, and 3) external data requirements.

3.9.2.1 System and Structure Refinement The main activities of the

refinement phase were: 1) Adding additional methods and attributes to existing

classes to make them more reusable, 2) identification of previously existing software

that could be used in this design, 3) making decisions on how to represent multiple

relationships in the analysis, and 4) further modification to inheritance hierarchies.

The objective of this phase was to map how the object(s) could be implemented.

The order in which these steps are applied was not important. The idea was to make

sure that they had all been accomplished.

3-15

3.3.2.1.1 Class Refinement The purpose of the class refinement

activity was to examine each class in the analysis with respect to the reusability

factors mentioned previously. The analysis yielded a model of the real world system

under consideration. Therefore, some of the classes in the analysis lacked methods

and attributes to make them more reusable in other domains. The methods and

attributes that were needed to "round out" the classes were added in this step.

3.3.2.1.2 Identify Existing Code to Reuse The purpose of this

step was to look for existing code that could be reused in the design in hopes that

this would reduce the overall effort required. The best place to start looking would

have been other object-oriented systems that were similar to our application. Un-

fortuiiatcly, there were none. The code that we reused came from the UNIX system

library, the SGI graphics library, and the SGI flight/dog program.

The motivation to reuse code was driven by the application and the available

routines. This phase of the design was often done in concert with other phases

in the design process, such as handling external data requirements. For example,

the character of the system was such that certain entities were required to perform

input/output functions given the available system/library routines. These entities

were based upon the existing code.

The objective at this point in the high level design phase was to specify in

general terms what these procedurally based entities were and what they would do.

The specification included what the attributes were and what methods would be

offered by the new class. The implementation of these new methods would take

place during low level design.

Once the sources of code were identified, the next step was to fold the avail-

able pieces into an object-oriented framework. If we had another object-oriented

system, we would have simply taken whole classes out to reuse. Given that what

we had was essentially a collection of procedures, the procedures became methods

3-16

of objects outright or were going to be called from within methods. The data that

the procedures used became attributes of the new objects.

Rumbaugh (et al) calls a class that is based upon library or system routines

a "wrapper". Wrappers were constructed to make using the library routines easier,

to extend the functionality of the routines and to localize where the system routines

were called from. This provided the benefit that the system calls were encapsulated

and their usage became localized in one place. If the system calls ever changed, the

design would only be impacted in one area.

This step was very close to being low level design. This is due to the fact that

the tools of this step are implementations. The goal of this step was to organize

the available routines into an object-oriented framework. ThE existing procedures

and the data that they used essentially constituted a skeleton for a class that was

filled out with additional methods (how to fold existing code into an object-oriented

framework is the subject of chapter 6).

Not all system routines needed to be folded into classes. Deciding whether

to encapsulate system routines was dependent upon the number of functions that

referred to the same data. The key was to look for a group of data elements that

were used by multiple system calls in order to provide a different level of functionality

than that provided by simply returning or changing the data elements. This was an

indication of a candidate class. I mainly looked for characteristic functions given a

set of data that multiple routines used.

3.3.2.1.3 Designing Multiple Relationships Part of the analysis

revolved around defining the multiplicity of the relationships between classes/objects

that participated in a composite relationship. This step in the high level design

process involves deciding how many-to-one and many-to-many relationships will be

implemented. These decisions were made at a high level of abstraction and were not

implementation dependent.

3-17

The purpose of this step was to identify the strategy that would be used to

implement these multiple relationships. All of these relationships entailed some

type of list structure. Choosing the appropriate collection mechanism was the main

activity in this step.

Choosing the exact type of list was done with a number of factors in mind.

First and foremost was the fact that we were designing this system to be as fast as

possible. With speed as the overriding interest, the other factors that determined

which type of list to use were:

1. Frequency of access: How often would the list be accessed?

2. Type of access: How would the list be used? Would this require an ordered

list? Was access to specific objects needed? Was the list simply going to be

iterated from start to finish?

3. Frequency of additions/deletions: How often would the list be changed? Would

the user always add and never delete from the list? How many objects did we

expect there would be in the list at any one time?

4. Nature of the relationship between objects in the list: Was it enough that

the objects were in the list (perhaps in some particular order) or was there a

requirement for a more sophisticated relationship between the objects in the

list (eg. one that would require a generalized list)?

Once the type of list was determined, the next step was to add the necessary

classes and modifications to existing classes to incorporate the selected list into the

design. When this step was finished, there were no multiple relationships that led

to classes that didn't have some type of list associated with them.

3.3.2.1.4 Inheritance Structure Refinement Modification of the

inheritance structure in the program involved organizing the design to take advan-

tage of similarities between classes, standardizing protocols and identifying abstract

3-18

classes. All three of these activities were very closely related. The goal of inheritance

refinement was to further organize the design and to take advantage of commonality

between classes.

The first step was to try to factor commonality from the classes in the inher-

itance structure. New classes were created where they could be used by more than

one subclass or if they constituted a usable abstraction in themselves. This was done

with one warning in mind: "Do not create levels of specialization simply for the sake

of doing it" (11:143). The reason for this "second look" at inheritance was to look

at the design in light of the fact that new classes were added since the analysis.

Once commonality had been identified, standardization of protocols came next.

Standardization of protocols was accomplished by defining additional "root" super-

classes that contained the description of attributes and methods that should be

provided by all subclasses derived from them. As Korson suggests, the new root

class of an inheritance structure should be an abstract model of the target concept

(28:54). Standardization of protocols aids reusability by defining a default inter-

face for all the different variations of the root classes. The standard protocol and

attributes also serve as a starting point for new derived classes.

The last step in inheritance refinement was to identify abstract classes. In

the course of factoring the inheritance structures, there were classes that served

only as parts of others. The root classes of the inheritance structures fit into this

category. The abstract classes existed only to provide pieces for derived classes.

Instantiating objects of an abstract class would make no sense because they lack

the necessary attributes and/or methods to be usable. Identifying classes used to

instantiate objects served to define the usable "leaves" of the inheritance structure

tree.

While it was not part of this particular application, accommodating the sup-

ported level of inheritance would also belong in this step. This would correspond to

step four in Coad and Yourdon's Problem Domain Component (11:39-48). If the

3-19

target language does not support inheritance, then the design would be altered in

this step to take the supported level of inheritance into account.

3.3.2.2 Concurrency This step revolved around identifying which parts

of the design would be running at the same time. This was essential in determining

the type of control present in the program. The operating system, the implementa-

tion language and the computer all determined what type of concurrency would be

possible.

Coad and Yourdon's guidelines for building their Task Management Compo-

nent all applied here (11:73-76). However, their guidelines had to be carried out

in light of the capabilities of the hardware and software upon which the system was

implemented. It would not have made any sense to design a concurrent system if

concurrency wasn't supported.

Concurrency was not added simply because it was possible to implement. The

requirements of the application drove the decisions to include concurrency. In gen-

eral, it may be unavoidable to include concurrency in a system in some cases and

purely optional in others. The decision to include concurrency was made with the

extra processing requirements and the limitations on using concurrency presented by

the hardware and software in mind. The main limitation in our case was the fact that

it was much slower to communicate between multiple processes versus implementing

the system within one process.

3.3.2.3 External Data Requirements The motivation for this step was

to incorporate external data sources/sinks into the design. This involved identifying

the sources/sinks of the data and defining how the data was to get from the exter-

nal device to/from the computer. This step also involved specifying those classes

responsible for storing and retrieving (object) data and defining the required data

persistence strategies. This goal of this step was to recognize and accommodate the

external input/output sources of the system.

3-20

The products of the analysis phase included the descriptions of classes that

encapsulated the functions and data of the external stimuli. Given this description,

the next step was to define low level classes to perform input/output with the de-

vice(s) and the computer. This definition included how these "bridge" classes were

related to the external device classes. Since these lower level classes were normally

implemented using procedure calls provided by the operating system, this phase of-

ten overlapped with defining how to best use system and library routines (see section

3.3.2.1.2).

The second part of this activity was to identify where the system would store

and retrieve data about itself. This was motivated by the need to store object data

from one invocation of the program to the next. The classes responsible for achieving

persistence were identified and modified for the task.

3.3.3 Low Level Design/Implementation The purpose of the low level design

phase was to concentrate on implementing the design given the strengths and weak-

nesses of the language used. I have used the term "low level design" as opposed to

just "implementation" to emphasize the point that the design process does not stop

when coding begins. Implementing the design is not a simple matter of just coding

up the system.

The method used for low level design was derived mainly from the suggestions

given by Rumbaugh (et al) for doing object design. The activities of low level design

included: 1) deciding upon object representation, 2) implementing object methods,

3) establishing object visibility, and 4) identifying polymorphic methods. All of these

activities are closely related.

3.3.3.1 Object Representation This is derived from step 7 of Rum-

baugh's object design strategy (47:228-249): "Determine object representation -

decide whether to use primitive types (integer, string, real, etc.) or implementation

as an object. SSAN is a good example. Do you make it an object or simply im-

3-21

plement it as a string of 9 characters?" This step depended upon how the C++

language could be used. For example, C++ allows the user to use any valid "C"

construct in addition to the mechanisms provided for object-oriented programming.

It was not required to make everything an object (unlike the Smalltalk language

which requires that everything be an object).

The method used for deciding how to implement a class was to gauge the

functionality of the candidate class and implement it accordingly. The best indicators

of functionality were the characteristic methods of the class, or rather, the lack of

characteristic methods. If the candidate class contained nothing but selector and

modifier methods on all attributes ("Get" and "Set" methods) and did not serve

as a base class, then it was implemented as a data type. There was no reason to

complicate using these simple abstractions by implementing them as classes when it

was not required to encapsulate anything about them.

Another issue was where to put the definitions of these types. The simple

solution was to encapsulate the type definition within the class that used the type.

If other classes needed the same data type (as was the case with the three dimensional

"Point" struct), then the definitions were placed in a global file. Types that were

used internally in the class were hidden from users (other languages may not provide

this capability). However, some types were made public to users of the class to make

the class easier to use and/or more robust.

3.3.3.2 Implementing Object Methods Step 2 of Rumbaugh's object de-

sign method applies here (47:228-249): "Design algorithms to implement operations

choose algorithms that minimize the cost of implementing them. You may define

new classes and operations as necessary." I also added attributes to classes when the

implementations of objects made them necessary. Methods were also implemented

with the design strategy in mind. In this case, it was to build for speed.

Cohesion was the foremost principle used in implementing methods. In some

3-22

cases, this involved splitting methods into smaller, more cohesive methods that ex-

isted only for use by the object to implement more complicated methods. These

smaller methods were hidden from potential users because they didn't present enough

functionality in and of themselves.

New attributes were also added to the class during low level design. The

main reason for adding more attributes was to facilitate the execution of the meth-

ods. Some attributes were added to classes because their values were calculated fre-

quently. The "airspeed" attribute of the User Aircraft class and the various "NTSC"

attributes of the Text Item and Window classes are examples of this. Some attributes

were added because of how certain methods were implemented. The "tty" attribute

of the Port class is an example of this. The "tty" attribute was required by the

UNIX system calls that handled RS232 ports.

Designing for reusability played a major role in this step. This meant keeping

the number of parameters small and the names of the methods as descriptive as

possible. Designing for reusability also entailed simplifying the parameters that were

used. C++ allows a programmer to define enumerated types. I used enumerated

types to both "spell out" a user's options to simplify interfaces and to make using

the class more robust given the lack of a capability in C++ to define subtypes.

3.3.3.3 Establish Object Visibility This corresponds roughly to step 3

of Rumbaugh's object design method (47:228-249): "Optimize access paths to data

- may restructure class organizations to optimize access, add attributes that store

frequently calculated values or you may rearrange execution order for efficiency."

There were two aspects to establishing object visibility: 1) ensuring that a way

existed for objects to communicate and 2) defining exactly what was to be hidden

in the object with respect to other objects in the system.

A C++ programmer has five ways to make one object visible to another: 1)

inheritance, 2) make one object an attribute of the other, 3) make a pointer to one

3-23

object an attribute of the other, 4) implement one object as static class information

and include the header file that defines the class or 5) pass the needed object as

a parameter to all methods that require the object. These fairly limited ways of

establishing visibility caused the design to change to reflect the manner in which

visibility was established.

Once the necessary visibility had been established, the other side of the coin

was considered - purposely hiding information. Different languages offer ways to

explicitly declare the type of access allowed to a class. The C++ language offers

a number of ways to establish fine-grained control of visibility to a given class (a

discussion of how to exercise this control is included in appendix E).

As a general rule, all data members of a given class were hidden from all classes

except those classes that inherited from the given class. Child classes were given full

access to the data members of parent classes. No outside object has the capability

to modify a data member of another class outside of the methods offered by the class

that owns the data member. Granting unlimited access to data members would have

directly violated the principle of encapsulation.

The main question about what to hide concerned the methods of the classes.

Encapsulation was the main concern in this aspect of object visibility. A language

that offered some way of specifically designating which classes could use each method

of another class would have been ideal. This would have enabled us to hide even more

information from classes that didn't have to see it. While C++ does not provide

this ideal form of specification, it did offer a lot of control over visibility.

The methods introduced in the implementation of methods phase were all hid-

den from o'itside users. These methods were used only by the class to implement

higher level methods within the class. No other class needed to know of their exis-

tence. Most all of the remaining methods were made available to users.

There were instances in which there were methods that some classes needed

3-24

that were best hidden from others. The C++ language provides a capability to grant

unlimited access to a class through the "friend" keyword. This unlimited access was

allowed in light of the benefits gained from hiding items from other classes.

3.3.3.4 Identifying Polymorphic Methods The concept of

polymorphism was handled in low level design because it is primarily an issue of

implementation. The use of polymorphic methods is simply another way in which

to implement a method. The reason that this discussion was not included in sec-

tion 3.3.3.1 was because the C++ language requires that polymorphic methods be

specially designated within an inheritance hierarchy.

The best candidates for polymorphic methods were those methods that were

common to all classes within an inheritance structure. This highlighted another

motivation behind using abstract classes to act as "roots" to inheritance trees. After

standardizing the protocols of lower level classes during high level design, the root

classes could then facilitate polymorphic methods for all classes in the inheritance

structure. With standard methods in place, it was a matter of choosing which ones

would be polymorphic given how methods were to be implemented.

3.4 Conclusion

The analysis, high level design and low level design methods that I used were a

synthesis of practices outlined in chapter 2 and of personal experience gained during

this project. The analysis phase served to define the problem, define its boundaries,

and to define the system in object-oriented terms. The initial analysis allowed us to

split the project up into different parts such that little or no interaction was required

with each other during the design of each portion. The analysis was based mainly

upon Coad and Yourdon's method of OOA.

With OOA done, the high level design transformed the system into a repre-

sentation sti.table for implementation on a computer. All parts of the design were

3-25

constructed with the design strategy (to implement for speed) and good design prac-

tices in mind. The different parts of high level design included refinement of the ob-

ject structure, determining concurrency in the system and recognizing the external

sources of data.

The low level design concentrated upon the implementation of the system

in C++. During this phase, object representation, implementation of methods,

establishing object visibility and specifying polymorphism were the main activities.

The low level design was the main source of "private" attributes and methods added

to classes.

The analysis, design and implementation phases all went on at the same time.

I was not constrained to complete one phase on the whole system and then move to

the next. Parts of the design were still in the analysis phase while others had been

completely implemented.

Overall, the system was constructed in an incremental, bottom up manner.

Pieces were plugged into higher level objects as they were created in order to ap-

proach the system from the top down as well. By designing mainly from the bottom

up, the system as a whole became more defined as more low level objects were done.

This aided the design of higher level objects that had yet to be implemented. As-

pects of analysis, high level design and low level design were all present in the system

at the same time. Just as Grady Booch said, OOD was certainly an incremental,

iterative process.

3-26

IV. Design Highlights

4.1 Introduction

The purpose of this chapter is to show how the design methodology presented

in chapter 3 was actually applied. This chapter consists of a series of examples

used to illustrate how the design evolved from one phase of the object-oriented

design process to the next. The examples were chosen so that all the aspects of the

methodology discussed in chapter 3 would be covered. The strategy for the analysis

will be presented followed by specific examples of how certain classes were taken

from analysis to design and through implementation.

Object-oriented design is an iterative process. The iterative nature of the

design process complicated the explanation of the evolution of the classes. There

were two options for the presentation of the explanation: 1) explain the actions

taken to construct the design in the order in which they actually occurred or 2)

arrange the actions by the design activity to which they belonged and order the

discussion in the same order in which the activities were presented in chapter 3. I

decided to used a hybrid of the two approaches.

The explanation of the actions taken to construct the design will be presented in

the general order in which the actions occurred. The benefit of this approach is that

it will best illustrate how the process actually unfolded. Within this organization,

the actions will be categorized with respect to the subject areas discussed in chapter

3. The objectives to produce reusable code and to construct a good design permeated

all phases of the process.

4.2 Analysis

As noted in chapter 3, I did not take a sequential approach to OOA. I did not

identify all of the classes/objects, then affix some structural relationships between

4-1

them, then specify attributes, then finish by specifying the methods and which class

needed them. My objective was to end up with an analysis that contained the

necessary elements discussed in chapter 3. The strategy I took was to take a first

cut at the all of the elements as I went and then go back and enhance the analysis

where it needed more specification.

When doing the analysis one cannot consider the four elements of the OOA in

isolation from one another. Often times, one element may be the motivation behind

another element. For example, an inheritance relationship may be primarily driven

by the fact that a child class must offer a slightly different or additional type of

service.

The existing SGI Flight and Dog programs were used as the target(s) of the

object-oriented analysis. They were the prime sources of the requirements for the

system. The analysis focused upon the objects contained within the simulator and

the external devices that were available for use.

A context analysis was done prior to beginning the OOA. The context analysis

of the flight simulator is included as appendix B. The context analysis served to

define the boundaries of the problem. Besides providing a general description of

the problem, a benefit of the context analysis was the identification of the external

factors that affected the system.

The following description of how the initial analysis was conceived is meant to

convey a general sense of what motivated the initial view of the system. It is not

meant to convey a detailed view of the analysis process. This is mainly because the

initial analysis was not done in a detailed manner. It's purpose was to provide a

framework that would enable more detailed analysis later in the process.

4.2.1 Initial Analysis The most important realization concerning the system

was that the system essentially consisted of moving pictures. This was an application

where "the picture is the thing" (18:293).

4-2

Thus, the analysis began from that standpoint and expanded from there. The

"Graphical Object" class was the reflection of this line of thought in the analysis.

Starting with the models present in the system, it was apparent from using

the Flight and Dog programs that there were two types: those that moved and

those that did not. This was the justification for the "Dynamic Object" class which

was inherited from the Graphical Object. The Dynamic Object class represented

those models that had the capability to change position and/or orientation in some

specified manner.

The Dynamic Object class would serve as the base class for all moving objects in

the system. This included the specialized types of moving objects in the system: the

Aircraft and the different types of ordnance. Further specialization of this inheritance

tree produced two different classifications of ordnance and aircraft: those controlled

by the simulator and those controlled over the network.

Once the basic pieces had been identified, attention turned to the object that

would be responsible for characteristics of the imaginary world as a whole. This led

to the "Virtual World" class. The main purpose of the class was to provide a way

to manage the models and view the simulator world. The attributes of the Virtual

World would include such factors as the time of day and weather conditions.

The identification of the Virtual World class led to the identification of the

"Viewpoint" class. There could only be one view of the world used at a time. The

Viewpoint would contain all the necessary attributes and services to specify and

change the user's view of the virtual world.

With the Virtual World class in place, there was a need for an object that would

act as the controller for the whole simulation. This object would coordinate and

control all lower level objects in order to run the actual simulation. This produced the

Flight Simulator class. Attributes in the Flight Simulator class included simulator

time and an object of the Virtual World class. The main method of the Flight

4-3

Simulator class was the "run simulation" method.

This rough description constituted the objects that were internal to the sys-

tem. The focus then turned to the objects that were external to the system. These

included the "User Screens", "Joystick", "Polhemus", "Keyboard", "Mouse", and

the "Network" classes. Each of these classes would encapsulate the attributes and

methods needed to interact with external entities (the retrieval of the model defini-

tions from the computer would be a method inside the Graphical Object). Lines of

communication or composite relationships were added between the external classes

and the ones internal to the system in order to show what the external classes would

affect.

Figure 4.1 depicts the initial analysis as it stood on 10 Mar 91. Some aspects

of it need further explanation. The lower left corner of the figure represents the

fact that the F15 (an example name for a specific class of aircraft) would consist

of attributes that would be affected by user inputs. The "1O Control" class was an

attempt at trying to generalize input dependent classes under one root class.

Once the initial analysis was finished, we decided which parts of the analysis

were to be given to each of the project members to design and implement. Captain

John Brunderman was assigned the design and implementation of the Graphical Ob-

ject class. Captain Robert Olson was given the task of designing and implementing

the Viewpoint and Virtual World classes. The rest of the design and implementation

was given to me.

Even though we did not realize it at the time, this division of labor cor-

responded to the Model-View-Controller concept (MVC) which is a part of the

Smalltalk-80 programming environment for developing user interfaces (29:20). "The

MVC-triad separates the three components - functionality, input, and

output" (29:20). The Model represents the functionality in the system, the View

contains the methods to make the model visible and the Controller reacts to user

inputs and activates the methods of the model.

4-4

- ---- - Flight Simulator as of 10 Mar 91

Figure 4.1. Flight Simulator Initial Analysis

4-5

I I I I I I

Captain Brunderman and Captain Olson were responsible for the View por-

tion of the triad. Captain Olson was responsible for the Viewpoint and Virtual

World classes. These two classes would be responsible for how the world was viewed.

Captain Brunderman implemented the Graphical Object class. This class was re-

sponsible for defining and rendering the individual entities in the system. Taken

together, these classes constituted the View.

The Model and Controller portions remained. The Controller portion was

made up of the external input device classes. These allowed a user to interact with

the system. The Model portion consisted of the methods used to move the geometric

models encapsulated in the Graphical Object class.

In retrospect, this initial analysis was wrong in some places and correct in

others. It's main purpose was to provide an initial system to work with and it

fulfilled this objective. Further discussions will highlight where, when and why this

initial analysis changed character.

With the initial analysis done, we were able to consider the lower level classes

in the analysis in detail. This marked the point where we began to shift pieces of the

analysis into different phases. The lowest level classes were analyzed in more detail,

designed and then implemented. The intent was that these implemented lower level

objects would serve as building blocks for the rest of the system and would more

fully define the remaining parts of the system.

4.3 Low Level Inputs - The Joystick and RS232 Port Classes

The classes necessary for handling the CH Products Microstick joystick were

among the first to be implemented. The first order of business was to perform the

analysis of the joystick class in more detail. The detailed analysis phase was followed

by high level design and then an implementation. However, additional requirements

for the joystick were identified after the first version of the Joystick class was put

into use. The new requirements forced a second iteration of the high level design

4-6

and implementation phases for all classes that were related to making the joysticks

work. Once this second version was done, even more capabilities were added to the

Joystick class after it was integrated into higher level classes.

4.3.1 Detailed Analysis Given the initial analysis, the Joystick class was not

derived from any other class nor did it require any methods from any other class.

This indicated that the Joystick class could be implemented in isolation from the

other classes in the initial analysis.

The main sources of information for the analysis were the user's manual for

the joystick and previously written "C" routines written by Captain Bob Filer that

used the joystick (17). The user's manual detailed the capabilities of the joystick:

what it would return, how it would return it, and how to control it. The objective

in using these two sources of information was to find out what a joystick object was

and what it would do.

The attributes of the Joystick class were specified first. The Microstick user's

manual provided the information needed to specify the data that a Joystick object

would have to encapsulate. Please refer to figure 4.2.

4-7

Joystick
button_1 button_2
button_3 xvalue
y Yalue mode
outputmode

Figure 4.2. Initial Joystick Attributes

The attributes included: button 1 value, button 2 value, button 3 value, x

value, y value, the joystick mode (it has 6 ways of presenting data), and the joystick

output mode (polled, continuous or only when joystick values changed).

All six of Coad and Yourdon's tips listed in chapter 2 for identifying attributes

were used including rule 2. Rule 2 asks "How am I described in this problem domain

?". This rule would appear to conflict with the stated design objective to construct

classes for use by any application. The reason that it does not is that the objective

of analysis is to produce a model of the "real world" problem. Adding methods for

the sake of completeness (or some other reason) is best kept as an activity of design

because these additional services do not exist in the problem at hand.

The methods of the Joystick class were done next. The methods were based

upon the attributes that had been identified previously. The first methods that were

4-8

specified were the selector and modifier methods for the joystick mode and output

mode. I decided not to supply separate selector methods for the joystick button

and position attributes because they are returned at the same time by the joystick.

Therefore, the characteristic "Read" function was given the job of returning all of

them at the same time. It made no sense to add a modifier method for the buttons

or the position values since the joystick offered no such capability. Please see figure

4.3.

Joystick
button_1 button_2
button_3 xvalue
y.yalue mode
outputmode

GetMode SetMode
GetOutMode
SetOutMode
Read

Figure 4.3. Initial Joystick Methods

4.3.2 High Level Design I The detailed analysis step produced a workable

definition of what a Joystick object contained and what kind of capabilities it would

present. The next step that I took was to specify how the data was going to get

from the joystick and into the computer. This particular activity actually fit into two

4-9

parts of high level design: External Data Requirements and System and Structure

Refinement (using existing code).

4.3.2.1 External Data Requirements and Reusing Existing Code The

objective of the external data requirements step was to define how external data

would be accessed by the computer. The Microstick user's manual specified that

the joystick communicated with the computer through an RS232 port. In addition,

Captain Filer's existing joystick routines showed how to utilize an RS232 port using

UNIX system calls (17). Thus, the idea for the RS232 Port class was derived from

these two sources.

I initially decided that the RS232 Port to Joystick relationship was a

"generalization-specialization" relationship. This was based on the premise that

the Joystick simply added more functions onto an RS232 port. Consequently, the

Joystick was designated as a derived type inherited from the RS232 Port class.

Given that the RS232 port was accessed through UNIX system calls, work then

shifted into how to reuse existing code within an object-oriented framework (part

of the System and Structural Refinement activity). Captain Filer's code was again

instrumental in that it detailed the UNIX system calls used to control an RS232

port (17). Using Captain Filer's code and three other sources on UNIX system calls

(24, 44, 52), I was able to gain all the information necessary to construct a wrapper

class for the RS232 port.

There were three activities to perform when constructing the wrapper: 1)

identifying the system/procedure calls, 2) identifying the data that the calls used,

and 3) adding necessary methods and encapsulation so that the resulting wrapper

would be reusable. Using the existing code and references, I performed these three

steps and identified the "Open", "Close", "Read", "Write" and "Flush" methods

for the new RS232 Port class. I also identified the attributes that an RS232 port

object would have to remember in order to be used correctly (chapter 6 discusses

4-10

the process of folding existing code into an object-oriented framework).

4.3.2.2 Concurrency There was a degree of concurrency indicated in

the design. The joystick would, in certain modes, operate independently of the

computer. In addition, the UNIX operating system was capable of multiple processes

running at the same time (although in a timesharing mode). The UNIX operating

system input routines associated with the RS232 port would be part of a separate

process from the one running the simulator. Identifying concurrency in the high level

design phase made the issue of concurrency easier to handle in the implementation

phase because I knew where to expect it.

4.3.2.3 System and Structure Refinement Up to this point, one part

of system and structural refinement had been completed - reusing existing code.

Three activities remained: inheritance refinement, class refinement, and resolving

multiple relationships. The question of inheritance refinement and resolving multiple

relationships was not an issue at this point because there were only two very primitive

classes in existence. The system and structural refinement centered on the class

refinement.

The purpose of the class refinement phase was to examine each class with

reusability in mind. The RS232 Port class did not appear to need any adjustments

but the Joystick class needed some work. The Joystick class was not intended to

serve as a base class so I looked at it solely in terms of what a user would want in

a Joystick object. I examined the Joystick class with respect to the principles of

sufficiency, completeness, primitiveness, clarity of design and simplicity (robustness

is mainly a question of implementation and will be addressed in low level design).

The Joystick class seemed to provide sufficient methods with which to control

the joystick. There were methods to access all attributes and two methods provided

to change how the joystick sent information. The concept of "sufficiency" was used

as a kind of lower bound on the amount of functionality to provide in an object.

4-11

The concept of sufficiency only requires that the designer has built in the minimum

methods into a class.

Completeness was the other end of the spectrum. When I concentrated on

completeness, I asked the question "What else would I want this object to do for

me?". This line of questioning lead to the identification of the "Suspend" and "Re-

sume" methods which, in effect, turn the joystick off and on. Because it was possible

to get carried away with completeness, I kept the idea of "primitiveness" in mind.

The notion of primitiveness is offered by Booch as a check against getting car-

ried away with completeness (3:125). The check for primitiveness entails examining

each methoc and determining if a user can duplicate the method using simpler meth-

ods that the class already provides. The primitiveness check on the Joystick class

revealed no such methods.

The principles of simplicity and clarity of design were not a problem either. The

Joystick class had few attributes and a manageable number of methods. The names

of the attributes were chosen to match what they actually stored. The methods

were of standard "Get" and "Set" variety with a few other aptly named methods in

addition to these. The Joystick class seemed clear and simple thus far.

4.3.3 Low Level Design/Implementation I The low level design activity was

where the design finally took the form of code. Low level design was done with

the strengths and weaknesses of C++ in mind. Using good design principles and

designing for reusability were still of primary concern. The first iteration of low level

design for the Joystick and RS232 Port classes invoived all four phases of low level

design: 1) deciding upon object representation, 2) implementing object methods, 3)

establishing object visibility, and 4) identifying polymorphic methods.

4.3.3.1 Deciding Upon Object Representation and Implementation of

Object Methods None of the attributes defined in the high level design of the Joy-

4-12

stick and RS232 Port classes needed to be implemented as an object. None of the

attributes were important for anything other than the values they stored. There was

no extra functionality associated with them. Accordingly, all of the attributes were

implemented with standard C++ data types.

The high level design identified only one attribute for the RS232 Port class

(the port number). The rest of the attributes defined in the RS232 Port class were

motivated primarily by the data that UNIX needed for proper operation of the RS232

port itself.

One of the primary motivations for making a wrapper class is to make library

or operating system routines easier to use. All the RS232 port needs is the file

descriptor once it is opened. Most of the complexity occurs in the initialization of

the port. Therefore most of my efforts centered on trying to hide the complexity of

the RS232 port initialization.

Certain variables had to be initialized properly in order for an RS232 Port ob-

ject to function. The C++ language offers the capability to initialize the attributes

of an object when the object is created. This capability is provided through what

is termed a "constructor" method (the converse capability is provided by the "de-

structor", which will allow the user to perform actions when an object is destroyed).

I was faced with two problems: 1) even though I could hide some complexity,

some attributes would still have to be initialized correctly and 2) the lack of the

capability in C++ to define a subrange as a data type would necessitate a lot of

checking for improper values in the constructor before using values the user passed

in. The solution to the problems of making the class easier to use and more robust

was to use enumerated types.

Using the class was simplified by using descriptive names for each enumerated

value that would be used to initialize the appropriate attributes (eg. "raw" and

"canonical" for input handling). Using enumerated types also made the class more

4-13

robust because the compiler could now check for illegal values for the attributes.

One other attribute called "port open" was added to make processing a little

smoother. It would make no sense to try to read a port that had not been opened

yet. A method was also added to get the value of "port open". Adding this attribute

made the class even more robust.

The last adjustments to the class were the use of default parameters. C++

allows the programmer to specify the default values for any parameter passed to any

method. This capability was particularly valuable in implementing the constructor

because about the only attribute the user would normally need to specify was the

port number. All of the other parameters were not likely to be changed from a given

default. The parameters were arranged such that a user would only have to specify

the port number. All others would be set automatically.

The actual coding of the RS232 Port class methods were fairly straightforward.

Four of the methods were one or two lines. The "OpenThePort" method was

considerably more complex than the others due to the way in which the port had to

be set up and opened. I relied upon Captain Filer's code for guidance in this area

(17).

The implementation of the Joystick class methods proceeded in a manner sim-

ilar to the way in which the RS232 Port class was implemented. I made use of

enumerated types to specify the joystick mode and the output mode. I also used

default parameters in the constructor to cut down on the number of parameters that

the user had to pass under normal circumstances. One difference between the imple-

mentation of the two classes was that speed was more of a concern with the Joystick.

The "Read" method and the form that the attributes eventually took reflected this.

4.3.3.2 Establishing Object Visibility The first aspect of establishing

object visibility, ensuring that communication can take place, was not a problem.

4-14

There were only two classes thus far and one was inherited from the other. Defining

what was to be hidden inside each object was the main task.

The C++ programming language offers a number of keywords that a program-

mer can use to define what is hidden within an object. These keywords are all used

within the class header. The four C++ keywords are "private", "protected", "pub-

lic" and "friend" (55). An extended explanation of these constructs and suggestions

for when these keywords should be used can be found in appendix E.

I started with the Joystick class. All data members were declared private (as

opposed to protected) because I didn't expect the Joystick class to serve as a base

class. The original implementation contained no extra methods that the object would

use to implement higher level functions. Accordingly, all the Joystick methods were

made public. With no private methods, there was no need for friend classes.

The next question was whether to make the inheritance relationship between

the Joystick and RS232 Port classes public or private. Were there any methods of an

RS232 Port that a user of a Joystick object would need to have access to? Because

the SuspendAll-nputs and ResumeAllInputs methods were not declared as static,

the inheritance had to be public.

Given that the inheritance was made public, attention turned to what methods

to make visible only to the Joystick class. What would the Joystick need that some-

one using a Joystick object wouldn't? This included all but the "Suspend_.Allnputs"

and "ResumeAllInputs" methods, which were declared as public.

The last questions concerned the visibility of the data members of the RS232

Port class with respect to the Joystick class. After looking at the data members and

the methods where they were used, I decided to make all of the data members of the

RS232 Port class private. The Joystick class had no reason to access the attributes

of the RS232 Port class outside of the methods offered by the Port.

4-15

4.3.3.3 Identifying Polymorphic Methods The only polymorphic meth-

ods that were required were the "Suspend" and "Resume" methods. This meant that

the methods had to be specially designated in the base RS232 Port class as "virtual".

Any method in a derived class that had the same name and parameters as the virtual

method would be polymorphic. Thus, the "Suspend" and "Resume" methods in the

Joystick class had the same name and parameters as their counterparts in the RS232

Port class.

The first implementation of the Joystick and RS232 Port classes was successful.

All of the methods were tested and performed as intended. The object diagrams of

the Joystick and RS232 Port classes as they appeared following their first implemen-

tation are depicted in figure 4.4.

RS232 Port Joystick
Port Number Ports button_1 button_2
Port Speed Port-Open button_3 xvalue

Port Type yyalue mode

Port FD output mode Buffer

tty B Joystick Suspend

RS232 Port Reservc ,-Joystick Resume
-RS232 Port Unreserve D GetMode SetMode
Read Suspend All GetOutMode
Write Resume All SetOutMode
Open Suspend Read
Close Resume

Figure 4.4. Initial Implementation of the Joystick and RS232 Port Classes

4-16

4.3.4 High Level Design H All of the activities of high level design were

performed again in the second iteration. The activities previously highlighted in

the explanation of the first iteration will be covered only briefly, if at all. The

main activity of the second iteration of high level design was Inheritance Structure

Refinement.

The second iteration of the design process was prompted by the requirement

to make it possible to attach the joystick to a different computer than the one that

was running the simulator. The most significant effect was that it highlighted the

fact that the inheritance relationship between the Joystick class and the RS232 Port

class was wrong.

4.3.4.1 Design Activities H The second iteration of the External Data

Requirements activity was concerned with detailing how data was going to get from

one machine to the other. Input on one machine had already been implemented with

the two existing classes. The question was how data would get from one machine to

the next. The answer was the UNIX socket.

Concurrency then became a bigger concern. Sockets enabled true concurrency

in the system. The main goal was to identify the thread of control through the

program. The solution was to specify two more classes: A "Port Reader" class and

the "Distributed RS232 Port" class. Please refer to figure 4.5.

4-17

RS232 Port

B

D
Joystick

Figure 4.5. Second Design of Joystick and RS232 Port Classes

The Distributed RS232 Port class would be responsible for "kicking off" a Port

Reader on the machine that would run th- joystick. The Distributed RS232 Port

was to act exactly as an RS232 Port class objmt. The fact that the information was

coming from another machine was to be transparent. The Port Reader would do

nothing but read the RS232 Port that the joystick would be connected to and respond

to the Distributed RS232 Port. Communication between a Distributed RS232 Port

object and a Port Reader object would be via Socket objects.

4.3.4.2 Inheritance Structure Refinement The main activity of the sec-

ond iteration of high level design was Inheritance Structure Refinement. The purpose

of the inheritance refinement phase in this example was to define how to best arrange

the additional classes found in previous activities.

4-18

The main activities of this phase included finding commonality in the system,

standardizing protocols, and identifying abstract classes.

The first task was to identify the commonality in the system. The main ques-

tion was how to tie in the Distributed RS232 Port class and the previously existing

RS232 Port class. The purpose of the Distributed RS232 Port was to provide a

transparent interface with another machine. Therefore, it had to provide the same

methods that the RS232 Port did. The way in which the methods could be imple-

mented would be hidden within the Distributed RS232 Port.

This lead to the second step: standardizing protocols. The two Port classes

had to offer the same methods. Thus, a root class simply named "Port" was created

to standardize the methods that the two Port classes would offer to users. The Port

class also contained the "port open" attribute that they both appeared to need. The

RS232 Port and Distributed Port classes were designated as derived types of the

Port class.

The Port class was designated as an abstract class. The Port class offered no

functionality on its own. It would make no sense to have a Port object. It depends

upon child classes to fill out the definition of the port.

The inheritance structure still needed a few adjustments at this point. The

existing RS232 Port class methods used extra attributes to check the ports that were

being used on a machine. I decided that the Port Reader would not benefit from

using this extra checking, so I split the RS232 Port class into two classes.

The Unmanaged RS232 Port was the same as the RS232 Port class except that

it lacked the extra port management. A derived class of the Unmanaged RS232 Port

class called "Managed RS232 Port" would act just the same as the old RS232 Port

class did. I also added a "Distport" object in recognition of the concurrency in the

design. The Distport was an object (actually just a "main" program) that would

make and run a Port Reader. The Port Manager object would be responsible for the

4-19

extra checking of port usage given different machines.

4.3.5 Low Level Design II - Revising the Joystick Class The Joystick was

originally implemented as a derived class of the RS232 Port class. The new require-

ment to make the joystick readable from another machine prompted a major revision

of the structure associated with the RS232 Port class. When the activities turned to

implementation, the resulting structure highlighted the fact that the original inheri-

tance relationship between the Joystick and RS232 Port classes was wrong. Revising

the relationship encompassed all phases of low level design.

The Joystick needed to use both the Managed RS232 Port and the Distributed

RS232 Port. Inheriting from the Port class would not work because it offered no

functionality on it's own. It made no sense for the Joystick to multiply inherit from

both the new Managed RS232 Port and Distributed RS232 Port because they offered

the same methods. The only recourse was some kind of composition relationship.

The first option was to make each port a component of the Joystick. If I were

using a language that did not support polymorphism, making both types of Ports

components of the Joystick would have been a good option. However, matters were

simplified by the polymorphism that C++ offered. I made a pointer to a Port class

object a component of the Joystick class.

A pointer to a Port class object was now a component of the Joystick as opposed

to the Port class acting as a base class for the Joystick. Given this relationship, the

Joystick could instantiate any type of Port and use polymorphic methods to use any

type of port. The only time the Joystick object would have to be aware of exactly

which type of port that was in use would be when the Joystick object was created.

It would be transparent as to what actual type of port was in use from then on.

Fixing the relationship between the Joystick and Port classes was the last

major structural change to this portion of the design. The system diagram for the

Joystick and related classes appears in figure 4.6.

4-20

--- --- --- --

nmanag istribDtsiPo er
Portnq or eae

Figure 4.6. Full Design of the Joystick and RS232 Port Classes

4.3.5.1 Trouble Signs In looking back on the initial implementation,

there were two signs that should have alerted me to the fact that I had picked the

wrong relationship between the two classes. The first was the basic nature of the
relationship. Was a Joystick really "a kind of" RS232 Port? Korson argues that, in

a good design, root classes should be abstract forms of the child classes (28:54). An
RS232 port is not an abstract form of a joystick.

I argued that the relationship between the two classes was a "generalization-

specialization" relationship. I reasoned that the Joystick was just a more complicated

form of an RS232 port. This was wrong. I had confused added functionality with

true specialization. A true specialization relationship would have been one where I

would have had to access all (or most) of the methods of the RS232 port outside of

4-21

solely using them inside the Joystick. This lead to the second indicator.

The second, and more definitive, indicator as to the true nature of the rela-

tionship showed up during the "Establish Object Visibility" phase of the low level

design. I purposely hid all of the data members of the RS232 Port class from the

Joystick class because the Joystick had no use for the data outside of methods that

the RS232 Port class offered. In addition, the main methods of the RS232 Port were

hidden from users of a Joystick object. These should have been the "dead giveaway".

A designer should never seek to hide data members of base classes from derived

classes. This attests to the nature of the inheritance relationship. If a derived class

is truly "a kind of" some base class, then the derived class should legitimately have

access to all the data members of the parent. The portions of the base class that

make up the derived class are an integral part of the derived class and not just a

component.

Granting access to methods of base classes through derived classes should also

be closely examined. In general, the characteristic methods of the base class should

be public to users of any derived classes. Accordingly, trying to hide or "uninherit"

methods is also a sign of an incorrect relationship.

The desire to hide data members or characteristic functions is a sign of an

incorrect relationship. The amount of hiding that a designer wishes to attempt

provides a general sense of how bad the r-lationship is. Trying to hide most or all

data members and/or methods of a base class indicates that the relationship is more

properly a component relationship. At a minimum, seeking to hide a significant

amount of information from derived classes is an indication of poor factoring.

4.3.6 Final Design Activities The final design activities included adding

functionality to existing classes. The need for these methods arose when the lower

level classes were used by higher level classes. There were certain situations where

the higher level object was performing actions that best belonged at a lower level.

4-22

Examples included controlling the noise inputs from the joystick, normalizing the

joystick inputs and controlling the resolution of the inputs from the joystick. This

was all added to the joystick to make it easier for the higher level objects to use.

4.4 Static Data Members and Static Methods

With C++, data members and methods declared as "static" can best be

thought of as data and methods offered by the class. In this manner, the class

functions as something more than a template for objects. The static data members

of a class can be accessed and modified by all objects of the class. Similarly, all of

the static methods can be used by the objects of the class without restriction.

Unfortunately, the current literature on object-oriented design and program-

ming doesn't address how to consider static data members and methods with respect

to the object-oriented paradigm.

The critical question in understanding their role was "What would I do if I

didn't have static data members and methods?". The answer was that I would have

to define another class to do the same job. Based on this observation I concluded

that C++ static data members and methods should be considered as nothing more

than another way in which to implement an object.

The "Port Manager" class/object indicated in figure 4.6 was based upon the

realization that what was really encapsulated by the static methods of the Managed

RS232 Port class was a "Port Manager" object. This discovery concerning the use

of static constructs came in the middle of the effort. Therefore, I had to go back

to existing classes and restrict access to all static data members. The only access

to static data was controlled through static methods. This encapsulation made the

static data and methods appear to be just like any other object in the system.

4-23

4.5 The Window and Text Window Classes

The Window and Text Window classes are an example of how to design classes

that will be reused as base classes. The Window class was designed to encapsulate

the information necessary to define and open a window. The Text Window class is

derived from the window class and adds the capability to display text in a window.

The main features of the two classes are that the methods are small, cohesive and

self-contained (no coupling between methods).

The window class is a wrapper for the library routines used to define a window.

It encapsulates the data and methods that are common to all windows of the system.

It is an abstract class that contains a standard protocol for all windows that will

be derived from it. It is an abstract class because it contains no information about

what is to be displayed in the window. This will be provided by child classes that

inherit the window class.

One facet of the methods that is not readily apparent is that they are all self-

contained. The user need not worry about any particular sequence when using the

methods other than using the methods in the right order to accomplish some higher

level function. There is no hidden logic that applies across lower level methods to

require that one be called before another.

The Window class is coupled to the "Window Manager" static object. The

Window Manager maintains the identifier of the current window of the system.

The current window is the one that the user has designated as such through the

appropriate method "Make-Current" or through enabling automatic changes through

the position of the cursor (a function of the Queued-Input Manager and the Window

Manager). Simply using a method of a window that is not presently the current

window will not change the window to being the current window.

All library calls apply only to the current window. Therefore, each method in

the window class must change the current window to the window to which it belongs,

4-24

perform the required action and then change the current window back to what it was

prior to the method call. This makes the methods self-contained. This also avoids

confusion in that the only method that actually switches the current window after

it has completed is the "Make-Current" method.

The Text Window class also contains methods that are self-contained. All

of the methods that the Text Window class provides lso do not require specific

sequencing. For example, both the "Clear" and "Draw" methods correctly set the

current window when they are executed. A user could call a Draw and then a Clear

without having to worry about whether the current window was set properly.

The "Clear" and "Draw" methods were actually added in response to another

programmer who was reusing the Text Window. The initial design included only the

"Redraw" method. This proved to be too restrictive in that the screen did not have

to be cleared before drawing the text in some situations. Therefore, the Redraw was

split into the Clear and Draw methods to make using the class easier. This was such

a good idea that the Draw and Clear methods were added to the standard protocol

specified in the Window class.

4.5.1 Resolving Multiple Relationships The high level design activity of Re-

solving Multiple Relationships is the last phase to explain. This step in the high

level design process focuses on how multiple relationships will be implemented in

the system. Initial efforts directed at finding the structures present in the Window

system are depicted in figure 4.7. A number of multiple relationships are indicated

in the figure. The following discussions highlight how the multiple relationships were

resolved within the Text Window and Window Manager classes.

4-25

: " : TextrWindow WinWiddo Text Item
Manager Wno

Figure 4.7. The Window Class Heirarchy

Each multiple relationship in the system was examined from the standpoint

of the questions listed in chapter 3. Given how each list was going to be used, I

made decisions on how best to represent the list in the design. Specifying these

lists sometimes involved the addition of attributes to classes and in some cases, the

addition of new classes to handle the list. With regard to the relationship between a

container and the contained objects, deciding whether the multiple relationship is a

composition relationship or interobject communication is based upon the need for the

containing object to use the methods of the objects that are being contained. If the

container needs methods from the objects being contained, then the container must

be composed of the objects being contained. Otherwise, interobject communication

will suffice.

The relationship between the objects being contained and the container is

4-26

either non-existent or one where the contained objects communicate with the con-

tainer. The ideal situation is where there is no communication because this means

there is no coupling between the objects of the list and the list itself. This is often

the case where a third class of object is responsible for managing the list.

The second situation occurs where the objects being contained add and/or

delete themselves from the container. While this denotes extra coupling in the

system, it may be justified by added functionality made possible by the arrangement.

This was the case with the relationship between Window objects and the Window

Manager.

The Window Manager exists to provide extra functionality to the windows.

Through it's communication with the Queued Input class (not pictured in figure

4.7), the Window Manager provides automatic redrawing of windows and changing

of the input focus. The Window Manager also tracked what the current window

was. The Window Manager is able to provide this functionality by keeping a list of

all of the windows that are open at the time.

The Window Manager was required to call methods of the windows that it

contained, so this was a composition relationship. The Window class did not depend

upon any other class to add or delete windows from the Window Manager, so there

had to be a way for a Window object to send messages to the Window Manager.

Given that the relationships were correct, deciding what type of list to use came

next. The Window Manager list was going to be accessed often. It was also important

that access to particular windows be granted quickly. There was the possibility that

windows could be opened and closed quite frequently as well. However, there was

no significance as to the relationship between windows themselves (like there would

be in a generalized list). Given this, and the fact that each window already had a

unique identifier, I decided to specify that the windows would be stored in a hash

table in the Window Manager class.

4-27

The relationship between the Text Window and Text Item classes was very

different than the relationship between the Window class and the Window Manager.

A Text Window was composed of many Text Items. The Text Window used methods

of the Text Items in order to display them. In contrast, a Text Item object did not

have to be aware that it was part of a Text Window. This is because the Text

Window or some other class of object was responsible for placing the Text Item in

the Text Window.

There were two types of Text Items: those that would change while the Text

Window was opened (dynamic text) and those that would not change (static text).

This slightly complicated matters in that this necessitated two lists within one text

window. The two different lists were required because of the differences in the way

the static and dynamic Text Items in the Text Window were going to be processed.

Since each TextItem contained a unique identifier, I again chose a hash table

within the Text Window to store the dynamic Text Items. Because the Static Text

items had less stringent requirements upon their usage, I decided to store them in

a singly linked list. The decision on which lists to use also drove the addition of an

attribute to the Text Item class.

Each type of list needed some kind of link from one TextItem to the next.

This had to be associated with each object in the list. Thus, I added a "next-item"

attribute to the Text-Item class and services to "Get" and "Set" the attribute. This

enabled the object to serve as part of either type of list of TextItems.

The purpose of this step was to specify how multiple relationships were to be

represented in the design. Choosing a particular type of list was based upon how the

list was going to be used. The intent of this phase is to specify these relationships

at a high level of abstraction so that the list could be implemented in any language.

4-28

4.6 Conclusion

The purpose of this chapter was to exemplify the methodology presented in

chapter 3. The principles in chapter 3 are not meant to be applied in a rigid sequence.

Despite the fact that some steps in the process must initially precede others, iteration

through all phases of the design is a feature of the object-oriented paradigm.

The methodology was presented by using the development of the Joystick class

as an example. Designing the class was done with reusability and the design strategy

to build for speed in mind. These two principles permeated the process and drove

many of the design decisions. The example was arranged to show where each activity

performed in the implementation of the Joystick fit into the methodology. The most

important aspect of the example was that it showed how and why the Joystick

was taken through three iterations of the design process along the way to its final

completion.

Two aspects of the methodology that were not exemplified in the explanation

of the Joystick class were designing a class to be reused as a base class and resolving

multiple relationships in the high level design. The Text Window and Window

classes were used to represent these two concepts and finish the coverage of the ideas

contained in chapter 3.

4-29

V. Reusing Procedurally Oriented Code

5.1 Introduction

This chapter will discuss the techniques that were used to fold procedurally

oriented code into an object-oriented framework. The technique will be illustrated by

using various wrapper classes as an example of how the technique was applied. The

technique will work equally well for code that is taken from normal "C" programs

as well as system/library routines like the ones used in the wrapper classes.

Folding procedurally oriented code into an object-oriented framework encom-

passes both high level and low level design. The high level design aspects include

identifying the entity to be encapsulated and the methods that it will offer. Imple-

menting the methods and attributes is a part of low level design. Admittedly, the

line between high level and low level design in this process is very thin.

The first section of this chapter will discuss the motivation behind constructing

classes from procedurally oriented code and will set the stage for the explanation of

the technique itself. The technique consists of three steps: 1) identify the candidate

class, 2) identify the data and all relevant procedures that use the data, 3) implement

a class to encapsulate the data and procedures. Each step will be explained in a

separate section of this chapter.

5.2 Reasons for Folding Procedures into Classes

There are two basic types of sources of procedurally oriented code: 1) other

programs, and 2) system/library routines. Using data and procedures from other

programs is more flexible because the implementation of the actual procedures and

data can be changed. The designer can copy (or translate) the existing code and

then basically do anything with it. This differs from using system/library procedures.

5-1

The implementation of the system/library routines and the data they operate upon

cannot be changed, so they must be used "as is".

The main motivation behind using existing code is reuse. This includes reusing

existing code to save time with the present programming effort and making the code

more reusable in the future by encapsulating it within a class. Folding procedurally

oriented code into an object-oriented framework is done to hide complexity, offer

more functions, and isolate system/library calls to one location.

One of the main principles of the object-oriented paradigm is encapsulation.

By hiding the complexity of using procedurally oriented code within a class, the class

becomes easier to understand and reuse. The user only has to concentrate on using

the new methods of the class and not on how they are implemented. This principle

applied to both sources of procedurally oriented code but was particularly applicable

to putting wrappers around UNIX routines.

Extending the functionality of existing routines was also a key factor in making

the new classes more reusable. For example, UNIX routines are not normally useful

in isolation. They are usually put together in a specific manner to provide a useful

function. Part of the process of putting a wrapper around UNIX routines was to

identify the higher level functions that would be offered as methods of the new class.

Implementing the methods was accomplished by using the smaller UNIX functions.

The la.L reason for making a new class around procedurally oriented code

concerns localizing system/library calls. If system/library routines calls are localized

within one class, then switching to a different operating system and/or machine

would entail changing only that one class. A designer would not have to hunt through

the rest of the code in order to find what had to be changed in order to switch

machines.

5-2

5.3 Identify the Candidate Class

This was the starting point of the technique. It was performed during the

high level design phase of the project. The purpose of this step was to identify a

candidate class. Identifying what to encapsulate focused the efforts in future stages.

The need to encapsulate existing code was driven by the needs of the applica-

tion and what was available to reuse. For example, the Socket class was originally

identified because there was a need for the Flight Simulator to communicate with

processes running on different machines. UNIX sockets were the only available op-

tion. Other classes of the Flight Simulator that were identified in a similar manner

included the "Window", "Queued Input", and the original "RS232 Port" classes.

The motivation for the identification of the candidate classes were the require-

ments of the application. There are many other classes that could have been based

upon UNIX routines but they were not needed for the Flight Simulator. The point

is that a designer should be aware of what the needs of the design are vs. everything

that could possibly be done with existing code.

A designer should not become overly concerned with the mechanics of the

procedures themselves at this stage of the design process. Examining the specifics of

the existing routines is an activity of implementation. The focus at this stage should

be on the general capability offered by the procedures and the possible methods that

might be derived from them.

During this stage, the designer should focus on the general aspects of the

problem so that the resulting class doesn't turn out to be nothing more than a

collection of existing routines. The end result of this process is an object that

encapsulates as much detail as possible. The procedurally oriented code that is to

be encapsulated may not be based upon information hiding principles. Focusing on

the details of the available procedures too early will lead to an obje,'t that doesn't

hide as much information as it could.

5-3

Consider the Socket class. I had originally identified it by researching UNIX

interprocess communication facilities. Sockets were the only way to communicate

with processes on other machines. Once I had identified the entity that I wanted

to encapsulate I tried to define the methods that a Socket would offer in the Flight

Simulator. I reasoned that the Socket class would offer six methods given this ap-

plication: "Read", "Write", "Open", "Close", "Listen" and "Connect". The only

attribute that I defined at this point was the "socket number".

It is likely that there will not be a multitude of attributes defined in this stage.

In fact, there may not be any attributes that are apparent at this point. The main

reason for this is that the data encapsulated by the class is highly dependent upon

the procedures that use the data. However, some very general attributes should

be apparent. Including these general attributes is advisable in order to keep in

mind that the end result of the process is an object and not merely a collection of

procedures.

The end result of this step is a candidate class that will be implemented

(mostly) by using existing code. The objective is to define an object-oriented frame-

work that is based upon the general capabilities of the existing routines and the

requirements of the application. It is very important that the existing procedures be

viewed only in very general terms so as not to compromise the principle of encapsu-

lation. The candidate class represents an object even though it may apparently lack

sufficient attributes at this stage. The idea is to define a candidate object and not

simply a collection of related procedures.

5.4 Identifying the Data and Procedures

Once the high level design of the candidate class had been prepared, the process

moved to implementation. The next step in the process was to identify the specific

data that could be encapsulated in the class and all relevant procedures that could

use the data. Identifying data and procedures was done in the same activity because

5-4

they normally can't be done in isolation from one another. The objective was to

generate a group of related data and procedures that could be used to implement

the desired methods of the candidate class.

Some of the procedures will already have been identified in the previous step.

Analyzing their function in terms of the capabilities that they provided was the basis

for the methods of the candidate class. These initial procedures form the starting

point for a more exhaustive search directed at finding all possible data and related

procedures that could be used in order to implement the candidate class.

The easiesi way to approach the task was to begin with one procedure that was

known to operate on the desired construct. Given this starting point, I found the

data that the procedure used. If the source of the procedures is existing code, the

next step is to find out where else in the existing program the data structure(s) used

in the initial procedure are used. Finding other procedures that used the data might

reveal other data. The process should be continued until no new data or procedures

are found.

Identifying data and procedures must be done a bit differently if the source

of procedures is system/library routines. The source code of these routines is not

normally available to the designer. The best source of information on system/library

routines are reference manuals. Fortunately, UNIX has an automated manual system

that served this purpose quite nicely. The manual pages detailed the data that each

procedure worked on and any other routines that were related to the one I was

currently investigating. The end result was the same: a complete list of data and

procedures that used the data.

5.5 Implementing the Methods

The last step of folding existing code into an object-oriented framework was to

implement the candidate class. The high level description of the candidate class and

the list of related data and procedures were used to finally put the class into code.

5-5

This involved implementing the high level class description, resolving unavoidable

coupling, and making the class more reusable.

The first activity was to implement the methods that were outlined in the

high level design phase. The list of procedures from the previous step made up a

"shopping list" of building blocks to use in constructing the methods of the class.

As each procedure was utilized, the data that it used was considered for inclusion as

attributes of the class.

Deciding if data used by a routine should be included in the attributes of the

class was based upon whether the data was going to be used again in some future

action. For example, the file descriptor returned from successfully opening an RS232

port was used in all of the other system routines used in that class. Thus, it was

saved as an attribute of the class. In contrast, the buffer used to return data from

a read function was not saved because no other routines needed the data that was

stored there. The designer must discriminate between parameters used only in the

function in question and parameters that are shared with other related functions.

Shared data must be included in the attributes of the class.

The initial implementation may contain code that is more properly included

in other classes of the design. This is not a major problem when using code from

an existing program. Unfortunately, the situation is sometimes unavoidable when

using system/library routines. Some routines may be coupled to other routines that

don't really fit into the class. If existing code is being used, it can be modified as

necessary. If system routines are being used, then this unavoidable coupling must

be dealt with.

An example of this situation occurred between the Queued Input and Window

classes. The problem was that all of the library routines that were contained within

the Queued Input class could not be used unless a Window was opened. The initial

attempts at the Queued Input class used a routine that sampled what the current

window was. This routine was included directly in the class in these first attempts

5-6

because the Window class had not been made yet. Once the Window class was

made, the call to the window function in Queued Input was taken out and replaced

with a method provided by the Window class. This put the function that sampled

the current window into the class where it belonged and also localized its usage to

one class.

The objective of managing unavoidable coupling is to hide all of it from the

user of the class(es). The Queued Input Manager and the Window Manager objects

were eventually used to perform functions to manage the objects of their respective

classes. They are tightly coupled objects. This coupling is a consequence of the tight

coupling of the library functions used to implement the Queued Input and Window

classes. All of the communication necessary to implement the two classes is done

through the Manager objects and is transparent to users of either class. The point

is that the coupling has been managed and hidden.

Once the class had been initially implemented and the inherent coupling ef-

fectively managed, the last step was to make the class more reusable. The class

definition produced in the high level design phase may or may not have included all

methods that would be useful for the class. The design at that phase was concerned

with the general capabilities of the existing functions. The designer should know

all the "building blocks" to use with the class from the second step of this process.

Additional methods may become apparent given the full list of functions to use on

the class.

After the additional methods have been done, every attempt should be made

to hide even more complexity from the user. For example, I made use of enumerated

types to hide the complexity of the RS232 Port class attributes and to make the

class more robust. Allowing the user to specify "raw" or "canonical" mode versus

requiring a value of 0 or 1 is an example. Another example was where I defined an

enumerated type to specify if a socket was to be "read only", "write only" or "both".

5-7

5.6 Conclusion

The main motivation for using existing code in the design is reuse. This con-

cerns reusing the code in the present design and making it more reusable for future

efforts. The first step in the process was to identify the class that was to be im-

plemented. This was done in the context of the general capabilities of the existing

functions and the needs of the application. The result was an object-oriented frame-

work within which existing routines would be used. The next step was to find all

relevant existing functions and the data that the functions used. The class was then

implemented using this "shopping list" of functions. The finishing touches of the

process were to add additional methods and make the class easier to use.

5-8

VI. Summary and Recommendations

This chapter summarizes the research presented in this thesis and also makes

recommendations for future studies.

6.1 Summary

The objective of this thesis was to present a comprehensive object-oriented

design methodology. The methodology was applied to the implementation of a low

cost flight simulator using the C++ programming language.

6,1.1 Literature Review The literature review in chapter II contained a thor-

ough overview of the object-oriented paradigm. The object-oriented paradigm is not

yet mature. Thus, there are many different views as to what the paradigm actually is

and what it's elements are. The information in chapter two is an attempt to arrange

these sometimes disparate views within a common framework.

The software crisis is the motivation for using object-oriented techniques. The

object-oriented paradigm can be used to help manage the complexity associated

with today's software projects. The elements of the object-oriented paradigm are

the object, the class, the relationship between classes and interobject communication.

The building blocks of object-oriented systems are "objects". An object is a

computer representation of a like object from the real world of the problem domain.

An object encapsulates both the data and the methods that act upon that data. The

data hidden within an object can only be changed or accessed through the methods

provided by the object. An object is a dynamic entity that exists only when the

computer program is running.

A class is a decription of the data and methods that make up the objects of the

class. Whereas an object is a dynamic, runtime entity, the class is a static description

6-1

of the characteristics that all objects of the class will share. A class is a template

for objects.

Classes can be related to each other by inheritance or by composition. If a class

inherits from another class, then the child class will incorporate all of the attributes

and methods of the parent class and will add it's own unique properties (47:3). An

inheritance relationship can best be characterized by saying that the child class "is

a kind of" the parent.

The second type of relationship between classes is the composition relationship.

In this relationship, an object of one class is an attribute of another. One class "uses"

another. This kind of relationship can be thought of as a "whole-part" relationship

(10:91).

The fourth element of the object-oriented paradigm is interobject communi-

cation. Commonly referred to as "message passing", interobject communication is

the way in which an object-oriented system functions. A "message" consists of one

object requesting a service from another.

The object-oriented paradigm is based upon the principles of abstraction and

encapsulation. The principle of abstraction is used to focus upon the pertinent details

of a problem while ignoring those that are not important at the time. Abstraction

allows the designer to focus on the outside of an object while ignoring what goes on

inside.

The principle of encapsulation is concerned with hiding what goes on inside an

object. Information hiding is a central feature of the object-oriented paradigm. The

object-oriented paradigm supports information hiding through the idea of a defined

interface within which to affect the state of an object. This interface is the methods

offered by the object. The methods are the only way to affect an object and the

implementation of the methods is hidden from the user.

The object-oriented software development lifecycle consists of analysis, design

6-2

and implementation phases. The object-oriented paradigm is seamless in that the

products of each phase are used directly in the next. No translation of results is

necessary from one phase to the next. While each phase builds upon the previous

one, object-oriented software development is meant to be an iterative process.

The objective of object-oriented analysis is to produce a model of the real

world in object-oriented terms. There are varied methods to approach OOA but

they all shared some common themes. The OOA process consists of identifying the

classes/objects in the system, identifying the relationship between classes, identifying

the attributes and methods of each class and specifying interobject communication.

Each of these steps can be applied in any order (and many times) along the way to

producing a model of the system.

The results of OOA feed directly into object-oriented design. The objective of

OOD is to decide how to move the "what" of analysis into the "how" of design. The

results of OOA are added to and in some cases modified in order to define how the

problem will be done by a computer. An example of this would be adding a class to

handle some external source of data. Two methods of OOD authored by Coad and

Yourdon (11) and Rumbaugh, et. al. (47) were summarized in chapter two.

Various authors have defined the elements of a good design. The majority of

these measures and guidelines revolve around the principles of coupling and cohesion.

Coupling is a measure of the interconnectedness between units in a system. The less

coupling the better. Cohesiveness relates to the function that a unit performs in a

system. Cohesive units perform one, focused function. A good design has a high

degree of cohesion in each unit.

Object-oriented programming is concerned with the implementation of the sys-

tem. Simply stated, OOP is programming with objects. The results of the design are

used as the blueprints for the coding of the system. An object-oriented programming

language should be used to implement the design.

6-3

The benefits of the object-oriented paradigm are that it provides a way to

manage the complexity inherent in today's software, provides a "seamless" software

development methodology, promotes reusability and promotes maintainability and

extensibility. All of these benefits are derived from the principles of abstraction

and encapsulation that the object-oriented paradigm is based upon. The classes,

objects, relationships between objects and the way the objects communicate are the

embodiment of these two principles.

Three drawbacks to object-oriented software development are performance con-

siderations, startup costs and lack of direct support for constraints present in the

system. The nature of object-oriented systems is such that they may not be suit-

able for applications that demand speed. Numerous methods calls, dynamic memory

allocation and late binding all contribute to this problem.

The object-oriented paradigm is very different from traditional methods.

Transferring to object-oriented practices from a more traditional procedurally ori-

ented methodology means a fundamental shift in the way that software is produced in

an organization. A large investment in training is necessary before jumping headlong

into object-oriented development.

The object-oriented software development methodology does not provide any

direct support for the constraints present in a system. Constraints are relationships

between objects that must be enforced when the system is operating. Presently,

the only recourse is to program these dependencies directly into the methods of the

objects in the system.

Despite being in it's relative childhood, the object-oriented approach has been

used to field systems in many different problem domains. Object-oriented techniques

have been used in making compilers, air defense simulations, control programs, de-

buggers, CAD systems and user interfaces. Object-oriented techniques are in wide

use today and it is expected that they will gain even more popularity in years to

come.

6-4

6.1.2 Methodology Chapter three presented the methodology used to imple-

ment the flight simulator. The methodology is comprehensive in that it describes the

phases of the object-oriented software development process from the initial problem

definition through to implementation. There is no restriction that a phase can only

be done once nor that it must be done completely. The object-oriented software

development process is meant to be iterative and incremental (3:189). An outline

of the methodology contained in chapter three is presented below:

I. Analysis

A. Context Diagram

B. Identify Classes/Objects

C. Identify Structures

D. Identify Object Attributes

E. Define Methods

II. High Level Design

A. System and Structure Refinement

1. Class Refinement

2. Identifying Code to Reuse

3. Resolving Multiple Relationships

4. Inheritance Structure Refinement

6-5

B. Concurrency

C. External Data Requirements

III. Low Level Design/Implementation

A. Object Representation

B. Implement Object Methods

C. Establish Object Visibility

D. Identify Polymorphic Methods

The process begins with analysis. The first task in analysis is to perform a

context analysis of the problem at hand. Among other things, the context analysis

defines the boundaries of the problem. The other four parts of the analysis are

derived from Coad and Yourdon's method of OOA: 1) Identify classes/objects, 2)

Identify structures, 3) Identify object attributes, and 4) Define object methods (11).

The resulting analysis is a model of the real world and serves as the basis for the

design.

The overall design process is dominated by practices that are used to make the

classes of the design easier to reuse. These include the guidelines for a good design

contained in chapter 2. Use of these guidelines helps to ensure low coupling, high

cohesion and a high degree of encapsulation in the design. Making a class easy to

reuse refers to making instances of a class easier to reuse and making potential base

classes easier to reuse.

Making instances of a class easier to reuse includes hiding as much comlexity

within the class as possible. The methods of the class should be complete, sufficient,

primitive, clear and simple. The methods should provide all meaningful services

given only the information contained within the object.

Making base classes easier to reuse is based mainly upon making the methods

of the base class (and all its ancestors) cohesive. Making the methods cohesive will

6-6

help to avoid the requirement to duplicate code between classes in order to perform

similar functions. The objective is to design base classes such that there will be

many cohesive "building blocks" that a future designer can choose from in order to

make higher level methods.

The design process is divided into high level design and low level

design/implementation. The products of the analysis represent the real world. The

objective of the high level design phase is to bring this model into a form that is

suitable for implementation on a computer. The high level design phase consists

of three major steps: 1) refinement of the system and its structure, 2) recognizing

concurrency, and 3) accomodating external data requirements.

Refinement of the system and its structure consisted of four main activities: 1)

class refinement, 2) identification of existing software, 3) resolving multiple relation-

ships in the system, and 4) refinement of inheritance hierarchies. Class refinement

involves looking at each class in the analysis with respect to making it more reusable.

Identification of existing software is done to reduce the overall effort and to begin

the process of folding existing routines into an object-oriented framework. Resolv-

ing multiple relationships is done to determine how multiple relationships will be

represented in the system. Refinement of inheritance hierarchies is done to stan-

dardize protocols within inheritance trees and to organize the design in order to take

advantage of similarity between classes.

The second phase of high level design revolves around identifying the possible

concurrency in the system. This was essential in determining the type of control

present in the system. This step is done with the capabilities of the operating

system, implementation language and available hardware in mind. The decision to

include concurrency should be driven by the needs of the application.

The third phase of high level design is designed to accomodate the external

sources/sinks of data that the system must deal with. This includes external devices

such as joysticks and mice in addition to data from files on the computer system.

6-7

The analysis will not generally include classes to bridge the gap between the external

data sources and the computer. Specifying these "bridge" classes is the purpose for

this step in high level design.

High level design is followed by low level design/implementation. The purpose

of low level design is to implement the design given the capabilities of the implemen-

tation language. The four activities of low level design are: 1) deciding upon object

representation, 2) implementing object methods, 3) establishing object visibility and

4) identifying polymorphic methods.

Deciding upon object representation is done in light of what methods that the

candidate object must provide. If the object doesn't provide any methods beyond

retrieving or saving components, then it may be acceptable to implement the object

as a data type. If any further methods are needed, then implementing the candidate

object with a class is required.

Implementing object methods is done with reusability in mind. Attributes can

be added as necessary to improve the execution of the methods. Additional methods

that are used only by the class to implement the object can also be added. Using

enumerated types to make using the class easier to use was particularly effective

when implementing the flight simulator.

Establishing object visibility consists of making sure that required data paths

exist and specifically hiding the elements of an object. Establishing object visibility

means making sure that the necessary communication can take place within the

system given the capabilities of the language. Hiding information within an object

deals with specifying exactly what a user of the object can see/use. This is also

language dependent.

Identifying polymorphic methods is included in low level design because poly-

morphism in an artifact of implementation. Polymorphism can be viewed as another

way to implement a method. Identifying polymorphic methods is done to set them

6-8

apart from "normal" methods in the system (some languages may require that poly-

morphic methods be specially designated).

6.1.3 Applying the Methodology Chapter 4 was devoted to providing exam-

ples of how the methodology described in chapter 3 was applied to the flight simula-

tor. Each phase of the methodology was exemplified in chapter 4. The majority of

the chapter centered upon the development of the Joystick and related classes. The

explanation highlighted the fact that object-oriented development process is both

incremental and iterative.

6.1.4 Reusing Procedurally Oriented Code The main motivation behind us-

ing existing code is to decrease the effort required in the new project. Existing

procedurally oriented code and system/library procedures are folded into object-

oriented frameworks in order to hide complexity, offer more functions and to isolate

system/library calls into one location. The objective is make the reused code easier

to (re)use and understand.

Reusing existing code encompasses both the high level and low level design

phases. The candidate class is identified during the high level design phase. The

designer should research the available code in order to get a general idea of the

functions and the data that the functions work on. The result of the high level design

should be a candidate class that will be implemented mainly by reusing existing code.

The objective in the high level design phase is to concentrate upon the general

capabilities of the existing code so that the resulting object doesn't turn out to be

nothing more than a collection of related procedures. The procedures should be

viewed as potential building blocks for a class that will hide the complexity of using

the existing code and data. Taking this conceptual step away from the procedures

themselves and viewing them in a general sense should help to ensure that the

maximum amount of information is hidden inside the class.

6-9

The low level design phase involves implementing the methods of the candidate

class by using the existing code. Attributes are added to the class as needed. Under

no circumstances should the user of the object have to track information shared

between the methods of the class. Such information must be hidden inside the

object. Final implementation also involves making the class easier to use by hiding

as much information as possible from the user. Allowing the user to use enumerated

types versus the exact data that a system call needs is an example of making the

class easier to reuse.

6.2 Conclusions

One of the objectives of this thesis was to determine whether object-oriented

techniques could be successfully used to implement a flight simulator. We wanted

to end up with a system that was reusable, maintainable and extensible. Object-

oriented techniques promised to provide a way to achieve these goals. I believe that

these goals have been accomplished.

The object-oriented paradigm provided the tools with which to create a system

that would satisfy the three requirements. However, it was still possible to create a

system that was not what we required. It is just as easy to create a terrible system

using objects as it is with procedures. It took the careful application of a coherent

methodology to ensure that a well designed system emerged at the end of the process.

6.3 Recommendations for Future Research

There are many different areas of the design that could be extended and im-

proved. The design has fulfilled its purpose in providing a baseline for future research.

Some of the aspects of the flight simulator that could be extended are the interac-

tion between simulators over a network, an improved aircraft cockpit display, and

the addition of different types of entities in the system.

6-10

This research has addressed only the process of object-oriented software con-

struction. Further research into the object-oriented software development methodol-

ogy should focus on the products of each phase of the process described in this thesis.

While I did introduce an extended notation to graphically depict the results of each

step, a notation is by no means a complete (or sufficient) record of the process.

Very few sources that I used in this research detailed the products and docu-

mentation of the process (3, 10, 11, 47). Some work has already been done here at

AFIT in formalizing the products of the analysis process (6). It would be beneficial

to extend this type of approach into the areas of design and implementation. Work

could also include such areas as class libraries and coding standards.

6.4 Remarks

Some authors argue that object-oriented design is a creative process and thus

is not suitable for "cookbook" approaches (3, 28). I believe the term "creative" is

used in reference to computer science when no widely applicable method is available

to use. Thus, in the absence of some sort of method, the process becomes "creative".

I have not tried to produce a "cookbook" for object-oriented design. What I

have tried to do was present process "stepping stones" that could be used to ensure

that a system was well constructed from the problem definition all the way through to

implementation. The boundaries between the phases of the object-oriented software

lifecycle are not distinct. Hopefully the comprehensive view of the overall process

of object-oriented software construction that I have presented should help to better

define the different phases of the process.

6-11

Appendix A. Bibliography of OOA Sources

Bailin, Sidney C. "An Object-Oriented Requirements Specification Method," Com-

munications of the ACM, 32: 608-622 (May 1989).

Booch, Grady. Object-Oriented Design With Applications. Redwood City, CA: The

Benjamin/Cummings Publishing Company, Inc., 1991.

Booch, Grady. "Object-Oriented Development," IEEE Transactions on Software

Engineering 12: 211-221 (February 1986).

Coad, Peter and Edward Yourdon. Object-Oriented Analysis, 2nd ed. Englewood

Cliffs, NJ: Yourdon Press, 1991.

Henderson-Sellers, Brian and Julian M. Edwards. "Object-Oriented Systems Life-

cycle," Communications of the ACM, 33: 142-159 (September 1990).

Rumbaugh, James and others. Object-Oriented Modeling and Design. Englewood

Cliffs, NJ: Prentice Hall, 1991.

Shlaer, Sally and Stephen J. Mellor. "An Object-Oriented Approach to Domain

Analysis," ACM SIGSOFT Software Engineering Notes, 14: 66-77 (July 1989).

A-1

Appendix B. Flight Simulator Context Analysis

Problem Statement: The Flight Simulator should simulate flying an aircraft. The

system should allow a user to realistically control the simulated aircraft. The

system should provide three dimensional "out the cockpit" views of the imag-

inary world in which the user is flying. The system should have the capability

to interact with other simulators running on separate machines.

Concept Map:

Commands

Network Acft Joystick
Data

SAcft Data Buttons, Position

Model Descriptions Orientaton Poihemus
Descriptions ht __ _Flight/-- Tracker

60 HZ NTSC
Monitor Video Signal Video Signal Monitor

Buttons, Position Key pressed

Mouse Keyboard

Figure B.1. Flight Simulator Concept Map

B-1

Event List:

- Aircraft data is received from the network

- Aircraft data is sent over the network

- User asks for help

- User changes the flap setting

- User changes the position of his/her head

- User changes the spoiler setting

- User changes the throttle setting

- User fires a weapon

- User moves the aircraft control stick

- User pauses the simulator

User quits the simulation

- User resets the simulation

- User selects a weapon

- User toggles the landing gear

- User toggles the video output

Narrative Constraint List:

Economic:

Existing equipment must be used to implement the system. Limited

funds will be available for low cost (less than $1000.00) items if nec-

essary.

B-2

Technical:

- System must be implemented using a Silicon Graphics 4D85 GT/GTX

workstation.

- System must use available equipment for implementation - Polhemus

3 Space Tracker, CH Products Microsticks, AFIT Head Mounted Dis-

play and possibly the Dimension 6 Spaceball.

Legal:

If code is reused from existing SGI programs, written permission must

be obtained from Silicon Graphics to distribute the code to users

outside AFIT.

B-3

Appendix C. Flight Simulator Design

light
Simulator

tatic W indow
Timer IManager

I (all components)

TGrid Translao World Dnmc User WText
Window Objects kAircraft Window

Figure C.1. Flight Simulator Composition

C-1

I:: t Window
ManaerMage

- I I

Queued Input I Window

- - - - - - - - - - - --J- - -

B

'Pont Manager ltTx tmr5

Figure C.2. Window and Queued Input Classes

C-2

Syamcatica-ic"

Figure ec C.3.c DnmcOjtClsHIrrh

_MC-3

Spceball
(The Spaceball. objects
are not used in the
Flight Simulator)

Fr Spaceel V SpacebAl

Figure C.4. Input Devices

C-4

Port
r i rt

IB- - - - - - - - -

Figue C.. RS32 ort lassHierrch

;C-5

W-nd o w t' i w

Multiple inheritance was
used to make access to the

View3D component easier
(not strictly a case for a
multiple inheritance
relationship).

Figure C.6. World Window Class Composition (8, 38)

C-6

ViPW3D Gen atrid

4D4

Figure C.7. Image Generation Classes (8, 38)

C-7

server is alive
I DistributedRS232_Port

-DistributedRS232_Port
" -------ReadFromPort

-WriteToPort

------- ClosePort
I Flush Queue

- IM

Figure C.8. Distributed RS232 Port Class

C-8

Dlzynamic ObjectLis
dDyna icObjectLt
ltDynamicObject

-MovaeAllObjcs~et-Ls

*This is a static object inside the
Dynamic Object class.

Figure CA9 Dynamic Objects Manager

C-9

~Distport

~port-rdr

This is actually a C program that instantiates
a Port Reader. The Distport program runs on
a remote machine. The only thing it does is
create a Port Reader and call the Read
method. The program runs until the Read
method terminates.

Figure C.10. Distport Module

C-10

Dynamic Object
VX,, vy, VZ

vx add, vy add, vz add
lx, ly, lz
listlocation

Set V Adds
Get List Location
SetListLocation
virtual Move

,I- -DynamicObject

--..-- DynamicObject

Figure CA1. Dynamic Object Class

C-11

o sidewinder-count

zProcessjnputs --------------
* -- Move

l ~.X Drmi -N':- --- -- -- -- --- --

-- 1

Windo Wnw

F*ih Simulator Tx

QLactive-input

HelpScreenHelp-Key PauseScreen m
Pause Key Virtualol

-Quit-Key Grid\
JoytxkReset-.Key Olist

NTSC .Key Tlist-
flight stick myplane

-Display-Help_Screen---------------

Objetya SuspendSimulation--------------
FlightSimulator------ 7 Ulm
-FlightSimulator Acf

-RunSimulation-------

- -- -- - - - - - -- -- - - - - -- - - -

Figure C. 13. Flight Simulator Class

C-13

r --Font

-- fontine
Gscalefactor
Gfontndex

---GetScaleFactor
-etFontIndex

PrintText

Figure C.14. Font Class

C-14

Font Manager
AvailableFonts
BaseFonts
fontsinitflag
numfonts
CurrentFont

FontCounter
FontLoader
InitFonts_Array
SetCurrentFont
GetFontName
PrintAvailableFontnames

*This is a static object inside the Font
class

Figure C.15. Font Manager

C-15

active button
dist-porILminuse

PW space-button

-- ------ ReadPacket
f-- ------ Init SpaceballState

-T -Spaceball
D I DReaCSpacebal

RS232Port RS232 Port

Figure C.16. Force Torque Spaceball Class

C- 16

Joystick
-- JOYPort JOY mode

JOY out mode JOY-buffer
JOY-noise-buffer button 1
button.2 button3
x-value y..yalue

Pcwt joyjcx joyjy
joylI joy2_

<----- Joy_ bytes-still-needed
noisy-pjackets x-normalize-value
y-pnralize-value x-resolution

By-jesolution center high
o I center low joy-enter

Mmd h joy_mrax joy-y-in.ax
RS232 Port RS232 Pourte is ra~tesuspne fis _e~tep

-- ReadPacket Init Joystick ---
- - Joytick-Joystick

Read-joystick Set-oystickMode--
-- Set_Joystick.. utput..Mode SetXResolution

SetYResolution SetXNormalize
Set_-Y_-Nonmalize SuspendInput

-- Resume-Input

Figure C.17. Joystick Class

C-17

Managed RS232 Port
No attributes - uses those from the
Unanaged RS232 Port.

-------ManagedLRS232_Port
--------ManagedLRS232_-Port
-------virtual Open-Port
-------virtual ClosePortB

Figure C.18. Managed RS232 Port Class

C-18

Port
portopen

RS232 PonRSt2P

D virtual Read_-FromPort
virtual WriteToPort
virtual Open Port
virtual ClosePort
virtual Flush.Queue
GetPort-Open

Figure C.19. RS232 Port Class

Port Manager
Host Ports
max-hostports

2Init__HostPortsArray

* The Port Manager is a static object
inside the Managed RS232 Port
class. The apparent lack of
methods in the Port Manager class
is due to the fact that the
Managed RS232 Port directly
modifies the attributes of the Port
Manager. This is bad practice and
should be changed so that access
to the Port Manager attributes is
handled through methods.

Figure C.20. Port Manager

C-20

Portt Reader

readerportD
buffer_1

bytes-still-needed
buffer 1_active
buffer-size
synch.-char

IRS232 Nit synch-lbc
socketso-pen

-- PortReader
-PortReader

--- ------ virtual ReadAndWrite
GetSockets-Open

Figure C.21. Port Reader Class

C-21

----:automaticjinputchange redraw
rera-dt redrawiconic

Iredrawicomic data depthchange
depthchangedata mnputchange
inputchange.Aata Devices-NotLQueued

Mmapr last.-device
---- (:-Process-inputLQueue Enqueue Devices

----- Add_ vice Save_-One_-Event
----- ---- SaveAllEvents Enable_ Globals

Disable-Globals Queue-ls~mpty
Enabk-Auto.-nputchange
DisableAto-Inputchanige
Process-Queue Redraw
Redrawiconic Depthchange
Inputchange RedrawBoth

N~is RedrawiconicBoth DepthchangeBoth
*The Queued Inputs Maae s Inputchange_Both GetMOUSEX
a static object ins5ide the GetMOUSEY GeLLEFrMOUSE
QuemedInput class. GetRIGHTMOUSE GetMIDDLEMOUSE

Figure C.22. Queued Inputs Manager

C-22

FQueued Input
device

-windowwithinput
data
num_ times_inqueue
event
nextginput

SQueued-Input
----- -.- QueuedInput

Set Window
Make_Global
GetNumTimes
GetData

---GetBoth
SetEvent

Figure C.23. Queued Input Class

C-23

Socket
static last-port
socket-addrinfo
port-number
MaxQueueLength
sockeLtype
socket connected
static GetNewPort
Socket
-Socket
ConnectToListener
ListenForConnector
ReadFromSocket
Write_To_Socket
CloseSocket
GetPortNumber
SetMaxQueue_Length
SetSocketStatus

Figure C.24. Socket Class

C-24

p Spspaceyt

a e

-pacebaort--Spaceba
~uspenddpu

spacep

Figre C2. pcea ls

C-7

-Spaceball_ -Port_-Reader
I -SpaceballPortReader

2 -virtual ReadAndWrite

- - - - - - - --- - - - -

Fiur CI6 pcbl otRae ls

IC-2

Static Timer
ticks_persecond
actual-tickspersecond
tick__counter timer-started
starttime end time
startbuf endbuf
adjjticks,_persecond deltaticktime
tpspctdiff exactticks__persecond

CalculateNewTPS GetTicksPerSecond
GetTickCounter GetAdjITicksPerSecond
GetDeltaTickTime Get_TpsPctDiff
GetActualTicksPerSecond
GetExactTicksPer Second SetStartTime
ResetTickCounter ResetTimer
StartOfCycle EvenTick
FractionOfSecond EndOf Tick

Figure C.27. Static Timer

C-27

txtex loaio ItSCxoamo
NH ttic loca-tein itexi

-tetAfolunHgt etcolor
-GetRetiveHeint SetXLocation
-text_jonti N SetYLocation

-SetJTSCyoScactor ie~etem i

---- ---- Render -NS Tx-tr

Figueet-8.Text Item Classon

Ce-coo eL)8cto

Textw

pTextWindow

------ virtual Open Window
>- - virtual CloseWindow

I ---- AddStaticText ----------------- --
---- AddDynamicText-------------- --

-------- DeleteTextFromWindow
I--- Change-ext

-ClearAllText

-ClearWindow

-RedrawWindow

'-::-DrawWindow -----------------------

Figure C.29. Text Window Class

C-29

'Unmanaged RS232 Port
port - D tty
port type port-speed
port-number port-mode

ReadFromPort
WriteToPort
Open-Port
ClosePort
Flush_Queue

Figure C.30. Unmanaged RS232 Port Class

C-30

detrc~fas..e ol lvtionw o azimsu

inc-tpoles.key eeao

dec...spoilers-key throttle-.setting, fuel-level
left- mdderke max flaps, max spoilers
righcruddexj..ey loc -x, loc..y, loc -z
stc vel-x, vel-y, vel-z

stick-ymax-roll-rate
throttle -stick tl' t2, t3, tx, ty
flight..stick fl, f2,fS, fx, fy

max lev ateCdp, SpCl, SpCd
flap-setting tiltuactor
spoiler-setting max-.spoilers
gearjdown PTW

(SzC Tom, aircraft-status vup~vrp, vpn
9f-p n gear..extending,uIn

------- Pocss-nptsGetViewPraetrs
_sr-irrf -UserAircraft

-------virtal oveLandAircraft

Figure C.31. User Aircraft Class

C-31

VSpaaeball

r 7PM InRe&SpaceballSte

RS232 Pcxt RS232 Pbct

Figure C.32. Voltages Spaceball Class

C-32

C Window Manager
first window
currentwindow

-- last-windowcntr
V_ -OpenWindows

---- window init flag
k___.J 'NTSC-xsf

i NTSC_ysf

..m..mgr -- InitWindowSystem
r GetCurrentWindow

SetCurrentWindow
.----- -WindowRedraw

----- WindowClose
- -- -- AddOpenWindow

...------ DeleteOpen Window
GetNTSC_Scaling
Get_NTSC

*Tne Window Mgr is I- SetNTSCWithScaling
a static object inside SetNTSC
the Window class. Set_NTSCSet_HZ6O

Figure C.33. Window Manager

C-33

I

Window
CWlTWinlbc x CUfLTwinjlocj
clfwinjoc~x lef~wiLoc..y
win-title win~border
open-now window-id
mm _-size -x M M-

Wido -

et CurrenbtS,*-oWak

e- tsmi R u in Get Tide

Gure C.34.WindoClas

GeCmd~-l GC-34iz

Appendix D. Bibliography of Additional Object-Oriented Sources

Anderson, Bruce and Sanjiv Gossain. "Software Reengineering using C++," Pro-

ceedings of the Spring 1988 EUUG Conference. 213-218. Buntingford, United

Kingdom: European UNIX Systems User's Group, 1988.

Bensley, E. H. and others. Distributed Object Oriented Programming. Rome Air

Development Center technical report RADC-TR-89-339, New Bedford MA;

The Mitre Corporation, March 1990. (AD-A219 689).

Blake, Edwin. "Models and Actors," Course Notes for course C-22 - Object and

Constraint Paradigms for Graphics. Course was given during SIGGRAPH

1991 - 18th International Conference On Computer Graphics and Interactive

Techniques. III- 13 - 111-34. ACM SIGGRAPH, August 1991.

Brfick, Dag M. "Modelling of Control Systems with C++ and PHIGS," Proceedings

of the 1988 USENIX C++ Conference. 183-192. Berkeley, CA: USENIX

Association, 1988.

Cioch, Frank A. "The Impact of Object-Oriented Decomposition on Procedural

Abstraction," The Journal of Pascal, Ada and Modula-2 8: 48-55 (May/June

1989).

Gibbs, Simon and others. "Class Management for Software Communities," Com-

munications of the ACM, 33: 90-103 (September 1990).

Huber, Reiner K. and John M. Wozencraft. On Distributed Wargaming in Op-

erational C2 Systems Using Object-Oriented Programming Languages. Naval

Postgraduate School (NPS-74-85-001), June 1985 (AD-A157 331).

D-1

Laffra, Chris. "Object-Oriented Frameworks for Interaction and Graphics," Course

Notes for course C-22 - Object and Constraint Paradigms for Graphics. Course

was given during SIGGRAPH 1991 - 18th International Conference On Com-

puter Graphics and Interactive Techniques. VI-17 - VI-32. ACM SIGGRAPH,

August 1991.

Lee, Elgin. "The Journey of a Thousand Miles," Computer Language, 8: 44-54

(October 1991).

Mrdalj, Stevan. "Bibliography of Object-Oriented System Development," ACM

SIGSOFT Software Engineering Notes 15: 60-63 (Oct 1990).

Rine, David C. "A Proposed Standard Set of Principles for Object-Oriented De-

velopment," ACM SIGSOFT Software Engineering Notes, 16: 43-49 (January

1991).

Rothenberg, Jeff. Object-Oriented Simulation: Where Do We Go From Here?.

Prepared for the Defense Advanced Research Agency, report number N-3028-

DARPA by the RAND Corporation, October 1989. (AD-A219 672)

Sakkinen, Markku. "Comments on the "Law of Demeter" and C++", SIGPLAN

Notices, 23: 38-44 (December 1988).

Texel, Putnam "Object-Oriented Software Technology" A Primer for Managers,

Ada Strategies 4: 3-8 (May 1990).

Weinberg, Randy and others. "Object-Oriented Systems Development," Journal of

Information Systems Management, 7:18-26 (Fall 1990).

Wirfs-Brock, Rebecca J. and Ralph E. Johnson. "Surveying Current Research in

Object-Oriented Design," Communications of the ACM, 33: 104-124 (Septem-

ber 1990).

D-2

Wisskirchen, Peter. "Object-Oriented and Classical Approaches," Course Notes

for course C-22 - Object and Constraint Paradigms for Graphics. Course was

given during SIGGRAPH 1991 - 18th International Conference On Computer

Graphics and Interactive Techniques. 11-9 - 11-22. ACM SIGGRAPH, August

1991.

Wybolt, Nicholas. "Experiences With C++ and Object-Oriented Software De-

velopment," ACM SIGSOFT Software Engineering Notes, 15: 31-39 (April

1990).

D-3

Appendix E. Using C++ To Implement an Object-Oriented Design

E. I Introduction

The purpose of this appendix is to present guidelines for using different C++

constructs when implementing an object-oriented design. These suggestions are

based upon the experiences gained from programming the prototype flight simulator.

The recommendations are grouped with respect to the two low level design phases

of object representation and providing object visibility. The following is a summary

of this appendix:

I. Object Representation: decide how to implement the candidate objects in the

design.

A. Implement the object with a class

B. Implement the object with a data type

C. Implement the object as a static object

II. Establishing Object Visibility: ensure that all data paths exist between objects

that must communicate and specify the visibility of each class with respect to all

others in the system.

A. Implementing required data paths

1. Inheritance

2. Composition

3. Pointer to an object

4. Parameter passing

5. Static objects

B. Hiding data.

1. C++ visibility mechanisms

2. Hiding inheritance relationships

3. Hiding information within an object

E-1

E.2 Object Representation

Object representation is an activity performed during low level design. The

purpose of the object representation phase is to decide how the objects present in

the high level design will be implemented. There are three ways to implement an

object in C++: 1) implement the object as an object using the tools provided to

define a class, 2) implement the object as a data type, and 3) implement the object

as a static object.

The first decision to make is whether the object should be implemented as

an object. This decision is based mainly upon whether the object provides any

characteristic functions and if the object is supposed to hide any data. If the only

functions that the candidate object provides are selectors and modifiers for each

attribute, then it might be justified to implement the object as a data type.

If the candidate object lacks characteristic functions, then the selector and

modifier methods must be examined in detail. A selector and modifier method must

exist (in some fashion) for all attributes. The selectors and modifiers must be very

cohesive. If either kind of method uses a different attribute than the attribute that

is the target of the method, then the candidate object must be implemented as an

object and not a type. In addition, the proposed selector and modifier methods must

effectively grant unlimited access to the attribute(s) that they are connected with.

There should also be no conditions upon how the attribute is selected or modified.

The determining factor is that the candidate object must not hide data nor

provide any functionality other than to group attributes together in order to be

implemented as a data type. The "Point" data type present in the flight simulator is

an example of a data type used in the Flight Simulator. The only purpose it serves

is to store x, y and z values. There is no other functionality associated with it (at

E-2

least not in this design).

The main advantage to using a data type versus a class to implement an object

is that it is simpler to use a data type. However, implementing an object in this

manner must be done with the previous discussion firmly in mind. The previously

stated guidelines make it difficult to justify using a data type versus an object. The

types of structures that do pass the tests will tend to be very small.

The disadvantage to implementing an object with a data type is that the

programmer loses the benefits associated with implementing the candidate as an

object. However, this may not be a disadvantage at all given the data type in

question. If the candidate does meet all the tests to qualify as a data type, then the

advantages provided by implementing the candidate as an object will not be needed.

The point is to be convinced that an object can be properly implemented as a data

type before actually implementing it.

Another disadvantage to using a data type versus a class is that it may com-

plicate future modifications to the system. If future requirements dictate adding

functionality to the data type, it will have to be switched to a class. Changing a

data type to a class could be an arduous task. The programmer will not have the

luxury of a clearly defined interface nor information hiding if this occurs. Use a class

if there is any possibility that a data type will take on added functions in the future.

Implementing a candidate object through a class is the preferred way of im-

plcmenting objects. This allows the programmer to take advantage of the benefits

of object-oriented programming.

The third way in which to implement an object is by making a static object.

Using static data members and methods was briefly discussed in section 4.4. The

main drawback to using a static object is that there can only be one of them in

existence in the system. This obviously limits their application.

Despite their somewhat limited applicability, static objects did find their way

E-3

into the Flight Simulator. They were most often used as "Manager" objects. These

managers perform actions on behalf of specific classes of objects. Examples include

the Window Manager, Queued Input Manager and the Font Manager objects.

There was only going to be one of these particular objects in the system.

Implementing the managers as static objects within the definition of the class that

they were most associated with served to keep the related pieces of code in one place.

This made both of these highly coupled abstractions (the static object and the class)

easier to use. The added coupling was justified by the added functionality that the

static object would provide.

Using static data members and methods to implement an object lacks some of

the information hiding that the class construct provides. Fortunately, this lack of

information hiding only applies to the class in which the static object is defined. Any

object of the class that the static object is defined within can access any methods

and/or data of the static object. Information hiding with respect to the class in

which the static object is defined must be enforced by the programmer. Directly

accessing static data members should not be allowed unless it is done through static

methods.

E.3 Providing Object Visibility

The results of the analysis and high level design specify that many different

lines of communication must exist between various objects in the system. There

are three ways in which this communication will be indicated in the design: 1)

inheritance relationships, 2) composition relationships and 3) communication outside

an inheritance or composition relationship. The two main activities of the low level

design phase of providing object visibility center on implementing the required paths

between objects that must communicate with each other and hiding data members

and methods within objects.

E-4

E.3.1 Implementing Required Data Paths This phase of low level design may

require changes to the design given the options that C++ offers for implementing

data paths. The most common changes will be that attributes will be added or mod-

ified. Structural relationships should not change mainly because C++ can directly

mirror the structural relationships in the system. The C++ programming language

provides the following capabilities to implement lines of communication in a design:

1) class inheritance (including multiple inheritance), 2) the ability to declare that an

attribute be an object of another class (composition) 3) the ability to use a pointer

to an object, 4) the capability to pass objects (or object pointers) as parameters to

methods, 5) the ability to use static data members and static methods.

In general, inheritance relationships should only be used where they are indi-

cated in the design. The product of the design is a model of the real world. Using

inheritance simply to make things easier to implement clouds the design. This con-

flicts with one of the benefits of using object-oriented design in the first place -

making the program easier to understand. Using inheritance without any purpose

wiii make subsequent maintenance of the program more difficult.

The urge to use inheritance to provide extra visibility to an object occurs

when a programmer is faced with a composition relationship in which a component

object must be accessed frequently by other objects in the system. If the proper

relationship were implemented, then outside objects would need to call a selector

to get to the desired component object and then make method calls from it. If the

component object and the object that contained it were related by inheritance, an

outside object would be able to call the desired method of the component objcct

directly. This would eliminate one method call and makes access to the component

easier. Although it should be avoided, if inheritance is used in this manner, it should

be justified and documented in the code.

Like inheritance, the composition relationship should be used where it is indi-

cated by the analysis and high level design. Again, this concerns remaining faithful

E-5

to the structure indicated by the previous phases. However, it may be necessary to

add a composition relationship that is not in the design.

The decision to add a new component relationship is driven mainly by the fact

that every entity in the system must be a part of another. With the exception of

making static objects, there is no way to make autonomous objects. There must

be some point in the program that will reserve space in computer memory for the

object and keep the space until it is not needed any longer. Adding a component

relationship is sometimes the only option available in order to establish and maintain

the existence of an object in the system.

The third way to implement a communication path is to use a pointer to an

object as a component of a class. Using a pointer to an object allows the programmer

more flexibility as opposed to using the actual object as a component. Using pointers

to objects enables polymorphism, allows the container object access to an object

that was possibly instantiated in another object, and it allows the programmer more

flexibility to specify how a component object should be instantiated.

The C++ language implements polymorphism solely through pointers to ob-

jects. To use polymorphism, the programmer declares a pointer to the base class as

a component. Given the pointer to the base class, the programmer could instantiate

an object of any derived class of the base class. After doing this, all the programmer

would have to do to make polymorphic calls was to make method calls using the

pointer to the base class.

Using a pointer to an object also allows the object to be shared among other

objects. An example from the Flight Simulator are the pointers to Joystick objects

defined in the User Aircraft and F16 classes. They were defined as pointers because

the Flight Simulator object was the one that actually told the computer to reserve

th- space for them. There could ohily be two Joystick objects in the simulation at a

time. Using pointers allowed them to be shared among different objects.

E-6

Using pointers to objects also allows the programmer more flexibility in in-

stantiating the object. If the actual object was declared, then there is only one place

available to instantiate it - in the parameter specification of the constructor of the

container object. If more flexibility is desired, then a pointer to the object must be

used. The object could then be instantiated within the code of the constructor in

any way the programmer wished.

There may be situations in which the programmer may not wish to actually

instantiate the object at all. This was also exemplified in the Flight Simulator

object. If the user does not wish to use the joysticks, then the Flight Simulator will

not instantiate them. It simply passes a null pointer down to classes that may have

wanted access.

Using pointers to objects also has some disadvantages. If an object is granted

access to a pointer, it could inadvertently delete the storage for it when it really

didn't "own" it. Conversely the object that does "own" the object could delete it

when other objects still had the pointer to the now defunct object. Allowing access

to a component pointer (eg. through a selector) should be avoided. The safest thing

to do is make a copy of the object and then pass the pointer to the copy.

A fourth way that C++ lets a programmer establish a data path is through the

parameters of methods. The main problem with this approach is determining what

other object has visibility to all of the objects involved. Some object will have to be

responsible for performing the method call. That object must have visibility to all

of the objects being passed as parameters and to the object providing the method.

Establishing communication using parameters works well for an object that

is using a method that is provided by one component that uses some other com-

ponent object as a parameter. Trying to use this option in situations other than

where a container object uses methods of a component dictates that the program-

mer "pass through" objects to methods that need them as parameters. This is not

E-7

advisable because it causes (possibly unnecessary) coupling in the system. There are

no examples of using objects as parameters to methods in the Flight Simulator.

The last option C++ offers to provide communication paths is through the

use of static data members and methods. Using this option is limited to situations

in which only one object will exist in the system. The advantages to using static

objects are that they exist autonomously in the system and access to the methods

of the static object are available without having to first instantiate an object of the

class in which the static object is defined.

The Static Timer static object is an example of a static object in the Flight

Simulator. There will only be one object that tracks the simulator time. The Flight

Simulator object is responsible for keeping the time correctly while other objects

simply access what the timing values are. No pointers to the Timer are passed

down to lower level objects by the Flight Simulator nor is the Timer declared as an

attribute of the Flight Simulator object. The Timer exists on its own and is easily

accessed by everything.

E.3.2 Hiding Data The second part of providing object visibility pertains to

specifying the exact visibility of attributes and methods of each object with respect

to all others in the system. This is accomplished using the C++ keywords to define

the visibility of an object: "private", "protected", "public", and "friend".

E.3.2.1 C++ Visibility Mechanisms The keyword "private" is used to

designate information that will be visible only to an object of that class. The key-

word is used to specify the visibility of inheritance relationships and to parts of the

class itself. Anything that can be included in a class description can be hidden

with the "private" keyword. The "protected" keyword operates just like the "pri-

vate" keyword except with respect to derived classes, which can access any protected

members as if they were "public". The "public" keyword indicates that an inheri-

E-8

tance relationship and/or information in the object is not hidden from users of the

object.

The "private", "protected", "public" and "friend" keywords are sometimes

confusing to use, especially when inheritance is thrown into the problem. The visi-

bility of an object of a class is fairly straightforward when no inheritance is involved.

The private information of the object cannot be used while everything declared as

public is fair game. If a class is designated as a friend, then an object of the friend

class can access anything in the object in question. Adding inheritance makes things

a bit more complex.

Consider the case where a programmer wishes to use an object of a class that

serves as a base class for some other derived class(es). All of the data and methods

declared as "protected" in the base class are "private" as far as the user of the base

class object is concerned. The fact that the class even serves as a base class is not

visible to the user of the object.

Now consider the case where the programmer wishes to use an object of a

derived class. The visibility to data and methods of the derived class is unaffected

by the fact that the class was derived from another. Visibility to the methods and

data of the base class through the object of the derived class is determined by whether

the inheritance relationship was declared as "private" or "public".

If the inheritance relationship was declared as "private", then a user of an

object of the derived class would not be able to access anything provided by the

base class. Conversely, if the relationship was defined as "public", a user of an

object of the derived class would have access to the public information offered by

the base class. The protected and private information of the base class would still

remain unaccessible to the user of an object of the derived class.

The fact that the inheritance was public or private has no effect upon what the

derived class can access from the base class. The declaration of the inheritance only

E-9

affects the visibility that a user of an object of a derived class has with respect to

the public information offered by the base class. The visibility that a derived class

has with respect to it's base class is determined by the visibility defined in the base

class.

The derived class would be able to access the information in the base class just

as a user of an object of the base class would with one exception. All details in the

base class that were declared as "protected" could be accessed as though they were

"public" by the derived class. Given this, there is no reason to declare a derived

class as a "friend" to the base class. Visibility should be granted through the use of

the "protected" keyword.

Adding more classes to an inheritance tree complicates matters further. How-

ever, the previous rules still apply. The best thing to do is consider a class as an

amalgamation of everything from which it was derived. The visibility rules con-

cerning inheritance relationships are unaffected by further inheritance established in

lower level derived classes.

For example, consider a class X that serves as a base class for class Y and the

inheritance is hidden. Another class Z that was derived from Y would not be able

to access anything in class X. The fact that the inheritance between Y and Z was

public or private would have no effect upon the fact that the inheritance between X

and Y was hidden. As far as Z is concerned, Y is not inherited from anything.

E.3.2.2 Hiding Inheritance Relationships Establishing the visibility of

an inheritance relationship centers on whether the public methods of the base class

should be accessible through the derived class. If an inheritance relationship is

declared as public, then users of objects of the derived class can use the public

methods offered by the base class as if they were provided by the derived class.

If the inheritance relationship is declared as private, then a user of an object of

the derived class can only access methods provided by the derived class. Access to

E-10

everything in the base class would be prohibited.

In general, inheritance relationships should be hidden only if all of the (now)

hidden public methods of parent classes are somehow replaced by the derived class.

One of the basic ideas behind inheritance is to be able to reuse existing classes

in order to build a more specialized object. If the parent classes are hidden, then

reusability is compromised. Wanting to hide methods of base classes could also be an

indication that the relationship between the classes is incorrect (see section 4.3.5.1).

Inheritance relationships should be declared as "public".

There is an exception to this rule. It may be necessary in certain circumstances

to have a derived class override a method offered by a base class. For example,

suppose derived class B inherits from base class A. If class A offered a particular

method that B wanted to replace, then it may be necessary to hide the inheritance

relationship in order to prevent a user of object B from calling the method that A

offered.

The C++ compiler can determine which method to call given the class of the

object and the parameter profile of the method. Given the class, the compiler will

call the method offered by that class if the parameter profile of the method called

and the method offered both match. In addition, the compiler will call the method

offered by the class B even if the parameter profiles are the same in classes A and

B. If no method offered by class B matches the requested method, then the compiler

will start to look up the inheritance chain for a method that does match the name

and parameter profile of the method requested. The first match found is the one

called.

The only time that it would be required to hide the inheritance relationship is

when class B provides a method to override class A's version and the two methods

do not have the same parameters. If the inheritance was public and a user were to

request a method that matches class A's parameter profile, then class A's version

E-11

would be called. The programmer may not want a potential user of the object to

know that class A's version even exists.

In this instance, a programmer might want to hide the inheritance between

class A and class B. If a user were to try and use class A's version of the method,

the compiler would catch the attempt as a syntax error. The bad part of this is that

it may force the programmer to replace methods that are hidden in class A with

nothing more than one line methods in class B to call the counterpart method in

class A. This particular situation never arose during the implementation of the flight

simulator.

E.3.2.3 Hiding Information Within an Object All data members of a

class should be hidden. Except in situations where a class will serve as a base class, all

data members should be declared as "private". In situations where a class will serve

as a base class, use the "protected" keyword to hide data members from all classes

except the derived classes of the base class. No object should be allowed access to the

data of another object outside of the methods offered to access the data. Allowing

unlimited access to data members violates the principle of information hiding.

Given that all data members should be hidden, the real focus of hiding in-

formation is the visibility to the methods that an object may offer. The "private",

"protected" and "public" keywords work the same for methods as they do for data

members. In general, all methods defined in the analysis and high level design phases

should be public. It was my experience that the majority of private methods were

added during low level design.

Most of the private methods present in the Flight Simulator were added during

implementation in order to implement higher level methods. They are used only by

the class in which they are defined. They do not represent enough functionality in

and of themselves to be useful. Thus, they were hidden to prevent their use.

These lower level methods should not be hidden from derived classes. They

E-12

make the base class more reusable in that they provide the designer of the derived

classes with very cohesive "black boxes" from which to compose methods in the

derived class. Given that reusing a base class is a "white box" exercise, these methods

also provide an amount of information hiding in this situation.

While the C++ language offers a lot of control over the visibility of an object,

there are times when even more power is required. For example, it is not possible

with C++ to specify which specific classes can access specific methods of a class.

In other words, there is no way to specify a list of classes that can use a particular

method of another class. The closest capability that C++ offers to this very high

degree of control is the "friend" keyword.

The "friend" keyword is used to specify which classes have full access to the

class in which they are declared as a "friend". Unfortunately, this is an all or nothing

proposition. The friend class has the capability to use all private data and methods.

Consequently, this is a very powerful and potentially dangerous capability.

Under no circumstances should the friend class directly modify the

private/protected data of another class. The only acceptable reason for designating a

friend class is to allow the friend class access to methods that should not be available

to other classes. In spite of this, the fact that a friend class had to be designated in

the first place might indicate a high(er) degree of coupling between the two classes.

The use of the "friend" keyword should be highly scrutinized.

E.4 Conclusion

This appendix detailed when and why to use specific C++ language constructs

in implementing an object-oriented design. Deciding how to represent objects in the

design is based upon the functionality offered by the candidate object. The object

could be implemented as a data type, through the class construct and as a static

object. The C++ class construct should be used most often.

E-13

Establishing paths between the objects in the design can be accomplished in

five different ways: 1) inheritance, 2) composition, 3) Using a pointer to an object,

4) passing an object as a parameter to a method and 5) using static objects. Each

strategy has it's own advantages and disadvantages. Using the proper one depends

upon the situation.

Defining the visibility provided by an object can be controlled with the four

C+ keywords "private", "public", "protected" and "friend". The C++ programmer

can exercise fine grained control over the accessibility to the methods and data of

an object and of a class. In general, all data members should be hidden. Access

to the object should only take place through the methods of the class. The C++

keywords used to specify visibility allow the programmer to take full advantage of

encapsulation necessary for implementing an object-oriented design.

E-14

Bibliography

1. Bailin, Sidney C. "An Object-Oriented Requirements Specification Method,"
Communications of the ACM, 32: 608-622 (May 1989).

2. B6zevin, Jean. "Some Experiments in Object-Oriented Simulation," Proceed-
ings of the Conference on Object-Oriented Programming: Systems, Languages
and Applications (OOPSLA) 1987.394-405. New York: published in ACM SIG-
PLAN Notes, volume 22, October 1987.

3. Booch, Grady. Object-Oriented Design With Applications. Redwood City, CA:
The Benjamin/Cummings Publishing Company, Inc., 1991.

4. -. "Object-Oriented Development," IEEE Transactions on Software Engi-
neering 12: 211-221 (February 1986).

5. - and Michael Vilot, "The Design of the C++ Booch Components," Proceed-
ings of the European Conference on Object-Oriented Programming/Conference
on Object-Oriented Programming: Systems, Languages and Applications
(ECOOP/OOPSLA) 1990. 1-11. New York:published in ACM SIGPLAN Notes
vol 25, October 1990.

6. Boyd, Captain Andrew D. 1991. A Formal Definition of the Object-Oriented
Paradigm for Requirements Analysis. MS thesis. AFIT/GSS/ENG/91D-3.
School of Systems and Logistics, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1991.

7. Brooks, Frederick P., Jr. "No Silver Bullet - Essence and Accidents of Software
Engineering," IEEE Computer 20: 10-19 (April 1987).

8. Brunderman, John A. 1991. Design and Application of an Object-Oriented
Graphical Database Management System for Synthetic Environments. MS the-
sis. AFIT/GA/ENG/91D-01. School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, December 1991.

9. Cargill, T. A. "Pi: A Case Study in Object-Oriented Programming," Proceed-
ings of the Conference on Object-Oriented Programming: Systems, Languages
and Applications (OOPSLA) 1986. 350-360. New York: published in ACM SIG-
PLAN Notes, volume 21, October 1986.

10. Coad, Peter and Edward Yourdon. Object-Oriented Analysis, 2nd ed. Engle-
wood Cliffs, NJ: Yourdon Press, 1991.

11. -. Object-Oriented Design. Englewood Cliffs, NJ: Yourdon Press, 1991.

12. Cox, Brad J. Object Oriented Programming - An Evolutionary Approach.
Menlo Park, CA: Addison-Wesley Publishing Company, 1987.

BIB-1

13. -. "Planning the Software Industrial Revolution," IEEE Software, 7: 25-33
(November 1990).

14. Duckett, Donald P. 1991. The Application of Statistical Estimation Techniques
to Terrain Modeling Here. MS thesis. AFIT/GCE/ENG/91D-02. School of En-
gineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1991.

15. Eldredge, David L. and others. "Applying the Object-Oriented Paradigm to
Discrete Event Simulations Using the C++ Language," Simulation, 54: 83-91
(February 1990).

16. Embley, David W. and Scott N. Woodfield. "Assessing the Quality of Abstract
Data Types Written in Ada," Proceedings of the 10th International Conference
on Software Engineering. 144-153. Washington DC: IEEE Computer Society
Press, 1988.

17. Filer, Captain Robert E. A 3-D Virtual Environment Display System. MS thesis.
AFIT/GCS/ENG/89D-2. School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB OH, December 1989.

18. Foley, James and others. Computer Graphics, Principles and Practices (2nd ed).
New York:Addison-Wesley Publishing Company, 1990.

19. Freeman-Benson, Bjorn N., and others, "An Incremental Constraint Solver,"
Course Notes for course C-22 - Object and Constraint Paradigms for Graph-
ics. Course was given during SIGGRAPH 1991 - 18th International Confer-
ence On Computer Graphics and Interactive Techniques. VII-25 - VII-34. ACM
SIGGRAPH, August 1991.

20. Gerken, Mark J. 1991. An Event Driven State Based Interface for Synthetic
Environments. MS thesis. AFIT/GCS/ENG/91D-01. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1991.

21. Gorlen, Keith E., Sanford M. Orlow and Perry S. Plexico. Data Abstraction and
Object-Oriented Programming in C++. New York: John Wiley and Sons, 1990.

22. Gossain, Sanjiv and Bruce Anderson. "An Iterative-Design Model for Reusable
Object-Oriented Software," Proceedings of the European Conference on Object-
Oriented Programming/Conference on Object-Oriented Programming: Sys-
tems, Languages and Applications (ECOOP/OOPSLA) 1990. 12-27. New
York:published in ACM SIGPLAN Notes vol 25, October 1990.

23. Halbert, David C, and Patrick D. O'Brien. "Using Types and Inheritance in
Object-Oriented Programming," IEEE Software, 6: 71-79 (September 1987).

24. Haviland, Keith and Ben Salama. UNIX System Programming. New York:
Addison-Wesley, 1987.

25. Henderson-Sellers, Brian and Julian M. Edwards. "Object-Oriented Systems
Lifecycle," Communications of the ACM, 33: 142-159 (September 1990).

BIB-2

26. Johnson, Ralph E. and Brian Foote. "Designing Reusable Classes," The Journal
of Object-Oriented Programming, 1,2: 22-35 (June/July 1988).

27. Jordan, David. "Implementation Benefits of C++ Language Mechanisms,"
Communications of the ACM, 33: 61-64 (September 1990).

28. Korson, Tim and John D. McGregor. "Understanding Object-Oriented: A Uni-
fying Paradigm," Communications of the ACM, 33: 41-60 (September 1990).

29. Laffra, Chris. "Object-Oriented Methods for Graphics," Course Notes for course
C-22 - Object and Constraint Paradigms for Graphics. Course was given dur-
ing SIGGRAPH 1991 - 18th International Conference On Computer Graphics
and Interactive Techniques. I-1 - 1-33. ACM SIGGRAPH, August 1991.

30. Lee, Kenneth J. and others. An OOD Paradigm for Flight Simulators, 2nd
Edition. Prepared for the Electronic Systems Division, technical report number
ESD-TR-88-31 by the Software Engineering Instititute, September 1988. (AD-
A204 849).

31. - and Michael S. Rissman. An Object-Oriented Solution Example: A Flight
Simulator Electrical System. Prepared for the Electronic Systems Division, tech-
nical report number ESD-TR-89-5 by the Software Engineering Institute, Febru-
ary 1989. (AD-A219 190).

32. Lieberherr, Karl J. and Ian M. Holland. "Assuring Good Style for Object-
Oriented Programs," IEEE Software, 6: 38-48 (September 1989).

33. - and others. "Object-Oriented Programming: An Objective Sense of Style,"
Proceedings of the Conference on Object-Oriented Programming: Systems, Lan-
guages and Applications (OOPSLA) 1988. 323-334. New York: published in
ACM SIGPLAN Notes, volume 23, October 1988.

34. Meyer, Bertrand. Object-Oriented Software Construction. New York: Prentice
Hall, 1988.

35. . "Reusability: The Case for Object-Oriented Design," IEEE Software 4:
50-63 (March 1987).

36. Miller, Katherine S. and others. Object-Oriented Software Requirements Spec-
ification for the UH-1 Helicopter Flight Simulator. Prepared for PM Trade,
AMCPM-TND-ED, report number MDA 903-87-D-0056 by lIT Research Insti-
tute, June 1990. (AD-A225 041).

37. Mullin, Mark. Object-Oriented Program Design With Examples in C++. Menlo
Park, CA: Addison-Wesley Publishing Company, 1989.

38. Olson, Robert A. 1991. Techniques to Enhance the Visual Realism of a Synthetic
Environment Flight Simulator. MS thesis. AFIT/GCS/ENG/91D-16. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, December 1991.

BIB-3

39. Parnas, David L. and others. "Enhancing Reusability With Information Hid-
ing," IEEE Tutorial on Software Reusability, Washington DC: IEEE Computer
Society Press, 1984.

40. Platt, Philip A. 1990. Real-Time Flight Simulation and the Head-Mounted
Display - An Inexpensive Approach to Military Pilot Training. MS thesis.
AFIT/GCS/ENG/90D-11. School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, December 1990.

41. Popken, Douglas A. Object-Oriented Simulation Environment for Airbase Lo-
gistics: Interim Report, December 1989 - September 1990. Air Force Human
Resources Lab (AFHRL-TP-90-78), November 1990 (AD-A228 055).

42. Pressman, Roger S. Software Engineering, A Practitioner's Approach. New
York: McGraw-Hill Book Company, 1982.

43. Rebo, Captain Robert K. A Helmet-Mounted Virtual Environment Display Sys-
tem System. MS thesis. AFIT/GCS/ENG/88D-17. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1988.

44. Rochkind, Marc J. Advanced UNIX Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

45. Rolfe, J. M. Flight Simulation. New York: Cambridge University Press, 1986.

46. Rubin, Kenneth S. "Reuse in Software Engineering: An Object-Oriented Per-
spective," Proceedings of COMPCON Spring 90: 35th IEEE Computer Soci-
ety International Conference. 340-346. Los Alamitos: IEEE Computer Society
Press, 1990.

47. Rumbaugh, James and othcrs. Object-Oriented Modeling and Design. Engle-
wood Cliffs, NJ: Prentice Hall, 1991.

48. Sanderson, Peter D. and Lawrence L. Rose. "Object-Oricated Modeling Using
C++," Proceedings of the 21st Annual Simulation Symposium. 143-156. Wash-
ington DC: IEEE Computer Society Press, 1988.

49. Schachter, Bruce J. Computer Image Generation. New York: John Wiley &
Sons, Inc., 1983.

50. Seidewitz, Ed. "General Object-Oriented Software Development Background
and Experience," The Journal of Systems and Software, 9: 95-108 (1989).

51. Shlaer, Sally and Stephen J. Mellor. "An Object-Oriented Approach to Domain
Analysis," A CM SIGSOFT Software Engineering Notes, 14: 66-77 (July 1989).

52. Silicon Graphics, Incorporated. Graphics Library Programming Guide, version
2.0. Mountain View, CA, 1990.

BIB-4

53. Snyder, Alan. "Encapsulation and Inheritance in Object-Oriented Programming
Languages," Proceedings of the Conference on Object-Oriented Programming:
Systems, Languages and Applications (OOPSLA) 1986. 38-45. New York: pub-
lished in ACM SIGPLAN Notes, volume 21, October 1986.

54. Somerville, Ian. Software Engineering. Menlo Park, CA: Addison-Wesley Pub-
lishing Company, 1989.

55. Stroustrup, Bjarne. The C++ Programming Language. Menlo Park, CA:
Addison-Wesley Publishing Company, 1986.

56. Stroustrup, Bjarne. "What is Object-Oriented Programming?," IEEE Software,
5:10-20 (May 1988).

57. Umphress, Major David A. 1990. Class handout distributed in CSCE 593, Sys-
tems and Software Analysis. School of Engineering. Air Force Institute of Tech-
nology (AU), Wrigl-Patterson AFB OH.

58. Wasserman, Anthony I. and others. "The Object-Oriented Stuctured Design No-
tation for Software Design Representation," IEEE Computer, 23: 50-63 (March
1990)

59. Wegner, Peter. "Concepts and Paradigms of Object-Oriented Programming,"
OOPS Messenger, 1: 7-87 (August 1990).

60. Winblad, Ann L. and others. Object-Oriented Software. Menlo Park, CA:
Addison-Wesley Publishing Company, 1990.

61. Wirfs-Brock, Rebecca J. and Brian Wilkerson. "Object-Oriented Design: A
Responsibility-Driven Approach," Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages and Applications (OOPSLA)
1989. 71-75. New York: published in ACM SIGPLAN Notes, volume 24, Octo-
ber 1989.

62. Young, 0. M. ADSIM, An Object-Oriented Hybrid Time-Stepped/Event-Based
Large Scale Air Defense Simulation. Contract F19628-89-C-0001. Bedford MA:
The Mitre Corporation, July 1990 (AD-B147 124).

63. Zyda, Michael. "Flight Simulators for Under $100,000," IEEE Computer Graph-
ics and Applications, 8:19-27 (January 1988).

BIB-5

